Cloud without Kubernetes

I think it’s safe to say Kubernetes has “won” the cloud mindshare game. If you look at the CNCF Cloud Native landscape (and manage to not go cross eyed), it seems like most of the projects are somehow related to Kubernetes. KubeCon is one of the fastest-growing industry events. Companies we talk to at Real Kinetic who are either preparing for or currently executing migrations to the cloud are centering their strategies around Kubernetes. Those already in the cloud are investing heavily in platform-izing their Kubernetes environment. Kubernetes competitors like Nomad, Pivotal Cloud Foundry, OpenShift, and Rancher have sort of just faded to the background (or simply pivoted to Kubernetes). In many ways, “cloud native” seems to be equated with “Kubernetes”.

All this is to say, the industry has coalesced around Kubernetes as the way to do cloud. But after working with enough companies doing cloud, watching their experiences, and understanding their business problems, I can’t help but wonder: should it be? Or rather, is Kubernetes actually the right level of abstraction?

Going k8sless

While we’ve worked with a lot of companies doing Kubernetes, we’ve also worked with some that are deliberately not. Instead, they leaned into serverless—heavily—or as I like to call it, they’ve gone k8sless. These are not small companies or startups, they are name brands you would recognize.

At first, we were skeptical. Our team came from a company that made it all the way to IPO using Google App Engine, one of the earliest serverless platforms available. We have regularly espoused the benefits of serverless. We’ve talked to clients about how they should consider it for their own workloads (often to great skepticism). But using only serverless? For once, we were the serverless skeptics. One client in particular was beginning a migration of their e-commerce platform to Google Cloud. They wanted to do it completely serverless. We gave our feedback and recommendations based on similar migrations we’ve performed:

“There are workloads that aren’t a good fit.”

“It would require major re-architecting.”

“It will be expensive once fully migrated.”

“You’ll have better cost efficiency bin packing lots of services into VMs with Kubernetes.”

We articulated all the usual arguments made by the serverless doubters. Even Google was skeptical, echoing our sentiments to the customer. “Serious companies doing online retail like The Home Depot or Target are using Google Kubernetes Engine,” was more or less the message. We have a team of serverless experts at Real Kinetic though, so we forged ahead and helped execute the migration.

Fast forward nearly three years later and we will happily admit it: we were wrong. You can run a multibillion-dollar e-commerce platform without a single VM. You don’t have to do a full rewrite or major re-architecting. It can be cost-effective. It doesn’t require proprietary APIs or constraints that result in vendor lock-in. It might sound like an exaggeration, but it’s not.

Container as the interface

Over the last several years, Google’s serverless offerings have evolved far beyond App Engine. It has reached the point where it’s now viable to run a wide variety of workloads without much issue. In particular, Cloud Run offers many of the same benefits of a PaaS like App Engine without the constraints. If your code can run in a container, there’s a very good chance it will run on Cloud Run with little to no modification.

In fact, other than using the gcloud CLI to deploy a service, there’s nothing really Google- or Cloud Run-specific needed to get a functioning application. This is because Cloud Run uses Knative, an open-source Kubernetes-based platform, as its deployment interface. And while Cloud Run is a Google-managed backend for the Knative interface, we could just as well switch the backend to GKE or our own Kubernetes cluster. When we implement our Cloud Run services, we actually implement them using a Kubernetes Deployment manifest, shown below, and right before deploying, we swap Deployment for Knative’s Service manifest.

apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    cloud.googleapis.com/location: us-central1
    service: my-service
  name: my-service
spec:
  template:
    spec:
      containers:
        - image: us.gcr.io/my-project/my-service:v1
          name: my-service
          ports:
            - containerPort: 8080
          resources:
            limits:
              cpu: 2
              memory: 1024Mi

This means we can deploy to Kubernetes without Knative at all, which we often do during development using the combination of Skaffold and K3s to perform local testing. It also allows us to use Kubernetes native tooling such as Kustomize to manage configuration. Think of Cloud Run as a Kubernetes Deployment as a service (though really more like Deployment and Service…as a service).

“Normal” businesses versus internet-scale businesses

What about cost? Yes, the unit cost in terms of compute is higher with serverless. If you execute enough CPU cycles to fill the capacity of a VM, you are better off renting the whole VM as opposed to effectively renting timeshares of it. But here’s the thing: most “normal” businesses tend to have highly cyclical traffic patterns throughout the day and their scale is generally modest.

What do I mean by “normal” businesses? These are primarily non-internet-scale companies such as insurance, fast food, car rental, construction, or financial services, not Google, Netflix, or Amazon. As a result, these companies can benefit greatly from pay-per-use, and those in the retail space also benefit greatly from the elasticity of this model during periods like Black Friday or promotional campaigns. Businesses with brick-and-mortar have traffic that generally follows their operating hours. During off-hours, they can often scale quite literally to zero.

Many of these businesses, for better or worse, treat software development as an IT cost center to be managed. They don’t need—or for that matter, want—the costs and overheads associated with platform-izing Kubernetes. A lot of the companies we interact with fall into this category of “normal” businesses, and I suspect most companies outside of tech do as well.

BYOP—Bring Your Own Platform

I’ve asked it before: is Kubernetes really the end-game abstraction? In my opinion, it’s an implementation detail. I don’t think I’m alone in that opinion. Some companies put a tremendous amount of investment into abstracting Kubernetes from their developers. This is what I mean by “platform-izing” Kubernetes. It typically involves significant and ongoing OpEx investment. The industry has started to coalesce around two concepts that encapsulate this: Platform Engineering and Internal Developer Platform. So while Kubernetes may have become the default container orchestrator, the higher-level pieces—the pieces constituting the Internal Developer Platform—are still very much bespoke. Kelsey Hightower said it best: the majority of people managing infrastructure just want a PaaS. The only requirement: it has to be built by them. That’s a problem.

Imagine having a Kubernetes cluster per Deployment. Full blast radius isolation, complete cost traceability, granular yet simple permissioning. It sounds like a maintenance nightmare though, right? Now imagine those clusters just being hidden from you completely and the Deployment itself is the only thing you interact with and maintain. You just provide your container (or group of containers), configure your CPU and memory requirements, specify the network and resource access, and deploy it. The Deployment manages your load balancing and ingress, automatically scales the pods up and down or canaries traffic, and gives you aggregated logs and metrics out of the box. You only pay for the resources consumed while processing a request. Just a few years ago, this was a futuristic-sounding fantasy.

The platform Kelsey describes above does now exist. From my experience, it’s a nearly ideal solution for those “normal” businesses who are looking to minimize complexity and operational costs and avoid having to bring (more like build) their own platform. I realize GCP is a distant third when it comes to public cloud market share so this will largely fall on deaf ears, but for those who are still listening: stop wasting time on Kubernetes and just use Cloud Run. Let me expand on the reasons why.

  1. Easily and quickly get started with the cloud. Many of the companies we work with who are still in the midst of migrating to the cloud get hung up with analysis paralysis. Cloud Run isn’t a perfect solution for everything, but it’s good enough for the majority of cases. The rest can be handled as exceptions.

  2. Minimize complexity of cloud environments. Cloud Run does not eliminate the need for infrastructure (there are still caches, queues, databases, and so forth), but it greatly simplifies it. Using managed services for the remaining infrastructure pieces simplifies it further.

  3. Increase the efficiency of your developers and reduce operational costs. Rather than spending most of their time dealing with infrastructure concerns, allow your developers to focus on delivering business value. For most businesses, infrastructure is undifferentiated commodity work. By “outsourcing” large parts of your undifferentiated Internal Developer Platform, you can reallocate developers to product or feature development and reduce operational costs. This allows you to get the benefits of Platform Engineering with a fraction of the maintenance and overhead. Lastly, if you are a “normal” business that doesn’t operate at internet scale and has fairly cyclical traffic, it’s entirely likely Cloud Run will be cheaper than VM-based platforms.

  4. Maintain the flexibility to evolve to a more complex solution over time if needed. This is where traditional serverless platforms and PaaS solutions fall short. Again, with Cloud Run there is no actual vendor lock-in, it’s just a Kubernetes Deployment as a Service. Even without Knative, we can take that Deployment and run it in any Kubernetes cluster. This is a very different paradigm from, say, App Engine where you wrote your application using App Engine APIs and deployed your service to the App Engine runtime. In this new paradigm, the artifact is a Plain Old Container. There are cases where Cloud Run is not a good fit, such as certain kinds of stateful legacy applications or services with sustained, non-cyclical traffic. We don’t want to be painted into a corner with these types of situations so having flexibility is important.

There are similar analogs to Cloud Run on other cloud platforms. For example, AWS has AppRunner. However, in my experience these fall short in terms of developer experience because of either lack of investment from the cloud provider or environment complexity (as I would argue is the case for AWS). Managed services like Cloud Run are one of the areas that GCP truly excels and differentiates itself.

Just use Cloud Run, seriously

I realize not everyone will be convinced. The gravitational pull of Kubernetes is strong and as a platform, it’s a safe bet. However, operationalizing Kubernetes properly—whether it’s a managed offering like GKE or not—requires some kind of platform team and ongoing investment. We’ve seen it approached without this where developers are given clusters or allowed to spin them up and fend for themselves. This quickly becomes untenable because standards are non-existent, security and compliance is unmanageable, and developer time is split between managing infrastructure and actual feature development.

If your organization is unable or unwilling to make this investment, I urge you to consider Cloud Run. There’s still work needed on the periphery to properly operationalize it, such as implementing CI/CD pipelines and managing accessory infrastructure, but it’s a much lower investment. Additionally, it provides an escape hatch—unlike App Engine or traditional PaaS solutions, there is no real switching cost in moving to Kubernetes if you need to in the future. With Cloud Run, serverless has finally reached a tipping point where it’s now viable for a majority of workloads rather than a niche subset. Unlike Kubernetes, it provides the right level of abstraction for most businesses building software. In my opinion, serverless is still not taken seriously due to preconceived notions, but it’s time to start reevaluating those notions.

Agree? Disagree? I’d love to hear your thoughts. If you’re an organization that would like to do cloud differently or are looking for the playbook to operationalize Google Cloud Platform, please get in touch.

Structuring a Cloud Infrastructure Organization

Real Kinetic often works with companies just beginning their cloud journey. Many come from a conventional on-prem IT organization, which typically looks like separate development and IT operations groups. One of the main challenges we help these clients with is how to structure their engineering organizations effectively as they make this transition. While we approach this problem holistically, it can generally be looked at as two components: product development and infrastructure. One might wonder if this is still the case with the shift to DevOps and cloud, but as we’ll see, these two groups still play important and distinct roles.

We help clients understand and embrace the notion of a product mindset as it relates to software development. This is a fundamental shift from how many of these companies have traditionally developed software, in which development was viewed as an IT partner beholden to the business. This transformation is something I’ve discussed at length and will not be the subject of this conversation. Rather, I want to spend some time talking about the other side of the coin: operations.

Operations in the Cloud

While I’ve talked about operations in the context of cloud before, it’s only been in broad strokes and not from a concrete, organizational perspective. Those discussions don’t really get to the heart of the matter and the question that so many IT leaders ask: what does an operations organization look like in the cloud?

This, of course, is a highly subjective question to which there is no “right” answer. This is doubly so considering that every company and culture is different. I can only humbly offer my opinion and answer with what I’ve seen work in the context of particular companies with particular cultures. Bear this in mind as you think about your own company. More often than not, the cultural transformation is more arduous than the technology transformation.

I should also caveat that—outside of being a strategic instrument—Real Kinetic is not in the business of simply helping companies lift-and-shift to the cloud. When we do, it’s always with the intention of modernizing and adapting to more cloud-native architectures. Consequently, our clients are not usually looking to merely replicate their current org structure in the cloud. Instead, they’re looking to tailor it appropriately.

Defining Lines of Responsibility

What should developers need to understand and be responsible for? There tend to be two schools of thought at two different extremes when it comes to this depending on peoples’ backgrounds and experiences. Oftentimes, developers will want more control over infrastructure and operations, having come from the constraints of a more siloed organization. On the flip side, operations folks and managers will likely be more in favor of having a separate group retain control over production environments and infrastructure for various reasons—efficiency, stability, and security to name a few. Not to mention, there are a lot of operational concerns that many developers are likely not even aware of—the sort of unsung, unglamorous bits of running software.

Ironically, both models can be used as an argument for “DevOps.” There are also cases to be made for either. The developer argument is better delivery velocity and innovation at a team level. The operations argument is better stability, risk management, and cost control. There’s also likely more potential for better consistency and throughput at an organization level.

The answer, unsurprisingly, is a combination of both.

There is an inherent tension between empowering developers and running an efficient organization. We want to give developers the flexibility and autonomy they need to develop good solutions and innovate. At the same time, we also need to realize the operational efficiencies that common solutions and standardization provide in order to benefit from economies of scale. Should every developer be a generalist or should there be specialists?

Real Kinetic helps clients adopt a model we refer to as “Developer Enablement.” The idea of Developer Enablement is shifting the focus of ops teams from being “masters” of production to “enablers” of production by applying a product lens to operations. In practical terms, this means less running production workloads on behalf of developers and more providing tools and products that allow developers to run workloads themselves. It also means thinking of operations less as a task-driven service model and more as a strategic enabler. However, Developer Enablement is not about giving full autonomy to developers to do as they please, it’s about providing the abstractions they need to be successful on the platform while realizing the operational efficiencies possible in a larger organization. This means providing common tooling, products, and patterns. These are developed in partnership with product teams so that they meet the needs of the organization. Some companies might refer to this as a “platform” team, though I think this has a slightly different meaning. So how does this map to an actual organization?

Mapping Out an Engineering Organization

First, let’s mentally model our engineering organization as two groups: Product Development and Infrastructure and Reliability. The first is charged with developing products for end users and customers. This is the stuff that makes the business money. The second is responsible for supporting the first. This is where the notion of “developer enablement” comes into play. And while this group isn’t necessarily doing work that is directly strategic to the business, it is work that is critical to providing efficiencies and keeping the lights on just the same. This would traditionally be referred to as Operations.

As mentioned above, the focus of this discussion is the green box. And as you might infer from the name, this group is itself composed of two subgroups. Infrastructure is about enabling product teams, and Reliability is about providing a first line of defense when it comes to triaging production incidents. This latter subgroup is, in and of itself, its own post and worthy of a separate discussion, so we’ll set that aside for another day. We are really focused on what a cloud infrastructure organization might look like. Let’s drill down on that piece of the green box.

An Infrastructure Organization Model

When thinking about organization structure, I find that it helps to consider layers of operational concern while mapping the ownership of those concerns. The below diagram is an example of this. Note that these do not necessarily map to specific team boundaries. Some areas may have overlap, and responsibilities may also shift over time. This is mostly an exercise to identify key organizational needs and concerns.

We like to model the infrastructure organization as three teams: Developer Productivity, Infrastructure Engineering, and Cloud Engineering. Each team has its own charter and mission, but they are all in support of the overarching objective of enabling product development efficiently and at scale. In some cases, these teams consist of just a handful of engineers, and in other cases, they consist of dozens or hundreds of engineers depending on the size of the organization and its needs. These team sizes also change as the priorities and needs of the company evolve over time.

Developer Productivity

Developer Productivity is tasked with getting ideas from an engineer’s brain to a deployable artifact as efficiently as possible. This involves building or providing solutions for things like CI/CD, artifact repositories, documentation portals, developer onboarding, and general developer tooling. This team is primarily an engineering spend multiplier. Often a small Developer Productivity team can create a great deal of leverage by providing these different tools and products to the organization. Their core mandate is reducing friction in the delivery process.

Infrastructure Engineering

The Infrastructure Engineering team is responsible for making the process of getting a deployable artifact to production and managing it as painless as possible for product teams. Often this looks like providing an “opinionated platform” on top of the cloud provider. Completely opening up a platform such as AWS for developers to freely use can be problematic for larger organizations because of cost and time inefficiencies. It also makes security and compliance teams’ jobs much more difficult. Therefore, this group must walk the fine line between providing developers with enough flexibility to be productive and move fast while ensuring aggregate efficiencies to maintain organization-wide throughput as well as manage costs and risk. This can look like providing a Kubernetes cluster as a service with opinions around components like load balancing, logging, monitoring, deployments, and intra-service communication patterns. Infrastructure Engineering should also provide tooling for teams to manage production services in a way that meets the organization’s regulatory requirements.

The question of ownership is important. In some organizations, the Infrastructure Engineering team may own and operate infrastructure services, such as common compute clusters, databases, or message queues. In others, they might simply provide opinionated guard rails around these things. Most commonly, it is a combination of both. Without this, it’s easy to end up with every team running their own unique messaging system, database, cache, or other piece of infrastructure. You’ll have lots of architecture astronauts on your hands, and they will need to be able to answer questions around things like high availability and disaster recovery. This leads to significant inefficiencies and operational issues. Even if there isn’t shared infrastructure, it’s valuable to have an opinionated set of technologies to consolidate institutional knowledge, tooling, patterns, and practices. This doesn’t have to act as a hard-and-fast rule, but it means teams should be able to make a good case for operating outside of the guard rails provided.

This model is different from traditional operations in that it takes a product-mindset approach to providing solutions to internal customers. This means it’s important that the group is able to understand and empathize with the product teams they serve in order to identify areas for improvement. It also means productizing and automating traditional operations tasks while encouraging good patterns and practices. This is a radical departure from the way in which most operations teams normally operate. It’s closer to how a product development team should work.

This group should also own standards around things like logging and instrumentation. These standards allow the team to develop tools and services that deal with this data across the entire organization. I’ve talked about this notion with the Observability Pipeline.

Cloud Engineering

Cloud Engineering might be closest to what most would consider a conventional operations team. In fact, we used to refer to this group as Cloud Operations but have since moved away from that vernacular due to the connotation the word “operations” carries. This group is responsible for handling common low-level concerns, underlying subsystems management, and realizing efficiencies at an aggregate level. Let’s break down what that means in practice by looking at some examples. We’ll continue using AWS to demonstrate, but the same applies across any cloud provider.

One of the low-level concerns this group is responsible for is AMI and base container image maintenance. This might be the AMIs used for Kubernetes nodes and the base images used by application pods running in the cluster. These are critical components as they directly relate to the organization’s security and compliance posture. They are also pieces most developers in a large organization are not well-equipped to—or interested in—dealing with. Patch management is a fundamental concern that often takes a back seat to feature development. Other examples of this include network configuration, certificate management, logging agents, intrusion detection, and SIEM. These are all important aspects of keeping the lights on and the company’s name out of the news headlines. Having a group that specializes in these shared operational concerns is vital.

In terms of realizing efficiencies, this mostly consists of managing AWS accounts, organization policies (another important security facet), and billing. This group owns cloud spend across the organization and, as a result, is able to monitor cumulative usage and identify areas for optimization. This might look like implementing resource-tagging policies, managing Reserved Instances, or negotiating with AWS on committed spend agreements. Spend is one of the reasons large companies standardize on a single cloud platform, so it’s essential to have good visibility and ownership over this. Note that this team is not responsible for the spend itself, rather they are responsible for visibility into the spend and cost allocations to hold teams accountable.

The unfortunate reality is that if the Cloud Engineering team does their job well, no one really thinks about them. That’s just the nature of this kind of work, but it has a massive impact on the company’s bottom line.

Summary

Depending on the company culture, words like “standards” and “opinionated” might be considered taboo. These can be especially unsettling for developers who have worked in rigid or siloed environments. However, it doesn’t have to be all or nothing. These opinions are more meant to serve as a beaten path which makes it easier and faster for teams to deliver products and focus on business value. In fact, opinionation will accelerate cloud adoption for many organizations, enable creativity on the value rather than solution architecture, and improve efficiency and consistency at a number of levels like skills, knowledge, operations, and security. The key is in understanding how to balance this with flexibility so as to not overly constrain developers.

We like taking a product approach to operations because it moves away from the “ticket-driven” and gatekeeper model that plagues so many organizations. By thinking like a product team, infrastructure and operations groups are better able to serve developers. They are also better able to scale—something that is consistently difficult for more interrupt-driven ops teams who so often find themselves becoming the bottleneck.

Notice that I’ve entirely sidestepped terms like “DevOps” and “SRE” in this discussion. That is intentional as these concepts frequently serve as a distraction for companies who are just beginning their journey to the cloud. There are ideas encapsulated by these philosophies which provide important direction and practices, but it’s imperative to not get too caught up in the dogma. Otherwise, it’s easy to spin your wheels and chase things that, at least early on, are not particularly meaningful. It’s more impactful to focus on fundamentals and finding some success early on versus trying to approach things as town planners.

Moreover, for many companies, the organization model I walked through above was the result of evolving and adapting as needs changed and less of a wholesale reorg. In the spirit of product mindset, we encourage starting small and iterating as opposed to boiling the ocean. The model above can hopefully act as a framework to help you identify needs and areas of ownership within your own organization. Keep in mind that these areas of responsibility might shift over time as capabilities are implemented and added.

Lastly, do not mistake this framework as something that might preclude exploration, learning, and innovation on the part of development teams. Again, opinionation and standards are not binding but rather act as a path of least resistance to facilitate efficiency. It’s important teams have a safe playground for exploratory work. Ideally, new ideas and discoveries that are shown to add value can be standardized over time and become part of that beaten path. This way we can make them more repeatable and scale their benefits rather than keeping them as one-off solutions.

How has your organization approached cloud development? What’s worked? What hasn’t? I’d love to hear from you.

Scaling DevOps and the Revival of Operations

Operations is going through a renaissance right now. With the move to cloud, the increasing amount of automation, and the increasing importance of automation, Ops as we know it is reinventing itself out of necessity. Infrastructure is becoming more and more sophisticated—and commoditized—and practices are just now starting to grow up around that. So while some worry about robots taking our jobs, the reality is more about how automation will help augment us to build better software and focus on higher-value things. It’s not so much about the distant future—whatever that may hold—so much as it is about the next five to ten years, what Operations looks like in that timeframe, and why I think it has to retool.

When we think about traditional Operations, we probably think about hardware and servers, managing networks and databases, application servers and runtimes, disaster recovery, Nagios checks, as well as the business side—vendor management, procurement, and so on. Finally, we have applications built on top by development teams.

We have a nice, clean separation—developers focus on building features and products, and Ops focuses on making sure the lights stay on. Of course, we know the reality is this separation also creates a lot of problems, so DevOps was borne out of this as a way to bring these two groups into alignment by improving communication and feedback loops.

Now, with the move to cloud, many of these traditional Ops functions are effectively being outsourced to cloud providers, i.e. the idea of NoOps. We get unprecedented elasticity and on-demand compute with far less overhead than we ever had before—shrinking procurement time from days or weeks to seconds or minutes.

What this leaves is a thin but important slice between Google or Amazon and those products built by developers—the glue, essentially, between cloud and product. I call this NewOps (which I use facetiously in reference to NoSQL/NewSQL), and it’s the future of Ops. This encompasses infrastructure automation, deployment automation, configuration management, logging, monitoring, and many other things. When Marc Andreessen said software is eating the world, he really meant it. The future of Ops—and many other things—is software. It’s killing the boring, repetitive things we really don’t want to be doing anyway and letting us shift our focus elsewhere.

Certainly, automation is nothing new and is, I think, an important part of DevOps, so I’m going to explain what I mean by NewOps and why I’m distinguishing it. I also don’t want to mischaracterize by having these neatly delineated Ops models. The truth is, your company doesn’t just one day graduate and gets its DevOps diploma. Instead, it might evolve through various manifestations of these different models. DevOps is a journey, not a destination in and of itself.

I like to think of a DevOps scale of automation, from manual provisioning all the way to fully self-service. Next, I add a second dimension, org size, from the smallest startups to the biggest enterprises.

Scaling DevOps

Scaling a business is probably one of the hardest things a company has to go through. In particular, dealing with the problem of silos. They happen at every company as it grows, but why is it that silos form in the first place?

Many companies start with a “DevOps” approach, often out of necessity more than anything. As a small startup, we can’t afford to have dedicated developers, QA, Ops, and security people. We just have people, and those people wear many different hats. Developers might be pushing their own code to production. They might even be managing the infrastructure that code runs on. There’s probably not a lot of stability, probably a lot of risk, and probably not a whole lot of thought towards controlling costs.

But as the product scales, we specialize. And as the business scales, we add various safety checks, controls, and processes. Developers write code, Ops people run it, QA gets blamed for defects, security blocks everything, and management wonders why nothing gets shipped.

And so we end up in the top left-hand quadrant with Ops as gatekeepers. Ops is fighting for stability and, at the same time, devs are basically fighting for change. More or less, we have a stable, cost-controlled, risk-averse environment—hopefully. But we also have a significant delivery and innovation bottleneck.

Specialization is good! But misalignment is not good. The question is, then, how do we scale specialization? Cross-functional teams come to mind. After all, DevOps encourages cooperation! We add an Ops engineer to each team, and maybe a reliability engineer, and perhaps a few extra for on-call backup, and of course a QA engineer too. Problem solved, right?

But hold on. What if we have 40 development teams? And all those teams are doing microservices. And, of course, all of those microservices are special snowflakes each with their own stacks, infrastructure, databases, and so on. This quickly gets out of control, but moreover, that’s a lot of teams and specialized roles on those teams. That’s a lot of headcount which equates to a lot of hiring and a lot of time and money. If you’re Google and you can just throw money at the problem, this might work out okay. For the rest of us, it might not be such a realistic option.

We go back to the drawing board and again ask ourselves how do we scale specialization? My thought to how we do this is with vision and product.

A vision is simply a mental image of what the future could be like. It enables independent decision making and alignment. Vision allows all of those teams, and the people on those teams, to make decisions without having to constantly coordinate with each other. Without vision, you’re just iterating to nowhere fast.

But vision without execution is just hallucination. Products are how we scale execution. Specifically, this idea of Operations through the lens of product, which I’ll describe after showing the parallel with what’s happening in QA.

In a lot of engineering organizations, many QA roles have been quietly disappearing. I think what’s happening is this evolution of QA, particularly, this shift from being test-focused to tools-focused.

We can look at companies like Amazon and Microsoft who popularized the SDET (Software Development Engineer in Test) model. These companies recognized that having a separate QA and development group causes a lot of problems, just like how having a separate Ops group does. We end up with SDEs (Software Development Engineers) who still focus on the development aspects of building software and SDETs who focus on the quality aspects, but rather than having two wholly separate groups, we just have development teams with SDETs embedded in them.

More recently, Microsoft moved to what they call a “Combined Engineering” model—effectively combining the SDE and SDET roles into a single role called a Software Engineer. Software Engineers write the product code, test code, and tools code needed to deliver their service. They are responsible for everything. Quality is a core concern of software development anyway.

Software Engineers write the code, unit tests, and integration tests. Those tests run in CI. The code moves through a CD pipeline before finally going out to production in some fashion. QA teams are shrinking, but what’s growing are the teams building the tools—the CI environments, the CD pipelines, the automated testing frameworks, the production tooling and automation, etc. The same is becoming true of Ops.

This is what I mean by “Operations through the lens of product.” The build, release, deploy automation, configuration management, infrastructure automation, logging, monitoring—these are all products.

Constraints often make problems easier. At Workiva, as we were struggling through that scaling phase, we placed a constraint on ourselves. We capped our infrastructure engineering headcount at 15% of R&D. This forced us to solve the problem using technology, and technical problems tend to be easier than people problems. In effect, this required us to productize our infrastructure. In doing so, we scaled. We controlled costs. We kept our headcount in check. We reduced risk. We accelerated development. Ultimately, we delivered value to customers faster, going from about three to four releases per year to multiple releases per day. In the end, this is really the goal of DevOps—to deliver value to customers continuously and to do it rapidly and reliably.

Rethinking Ops

It’s time we start to rethink Operations because clearly this model of Ops as cluster or infrastructure admins does not scale. Developers will always out-demand their capacity to supply. Either your headcount is out of control or your ability to innovate and deliver is severely hamstrung. Operations becomes this interrupt-driven thing where we’re just fighting fires as they happen. Ops as masters of production usually devolves to Ops becoming human incident routers, trying to figure out what team or person can help resolve problems because, being responsible for everything, they don’t have the insight to fix it themselves.

Another path that many companies take is Platform as a Service. Workiva is an example of this. For a very long time, Workiva didn’t have a traditional Ops team because the Ops team was Google. The first product was built on Google App Engine. This helped immensely to deliver value to customers quickly. We could just focus on the product and not the surrounding operational aspects, but there is a very real innovation bottleneck that comes with this.

The idea of “Ops lock-in” can be a major problem, whether it’s a PaaS like App Engine locking you in or your own Ops team who just isn’t able to support the kind of innovation that you’re trying to do.

My vision for the future of Operations is taking Combined Engineering to its logical conclusion. Just like with QA, Ops capabilities should be embedded within development teams. The reality is you can’t be an effective software engineer today without some Ops skills, and I think every role should be working towards automating itself out of a job. Specifically, my vision is enabling developers to self-service through tooling and automation and empowering them to deploy and operate their services.

The knee-jerk reaction to this idea is usually fully embracing Infrastructure as a Service, infrastructure as code, and giving developers freedom—and usually the consequences are dire. The point here is that the pendulum can swing too far in the other direction. This was a problem for a brief period of time at Workiva. As we were building new products off of App Engine, developers had this newfound freedom, so teams all went different directions introducing new tech, new infrastructure, new services, and so forth. It was a free-for-all, an explosion of stuff, and the cost explosion that comes with it.

There has to be some control around that, so we tweak the vision statement a bit: enabling developers to self-service through tooling and automation and empowering them to deploy and operate their services…with minimal Ops intervention. We have to have some checks and balances in place.

With this, Ops become force multipliers. We move away from the reactive, interrupt-driven model where Ops are masters of production responsible for everything. Instead, we make dev teams responsible for their services but provide the tools they need to actually own their systems end-to-end—from the code on their laptops to operating it in production.

Enabling developers to self-service through tooling and automation means treating Ops as a product team. The infrastructure automation, deployment automation, configuration management, logging, monitoring, and production tools—these are all products. It’s these products that allow teams to fully own their services. This leads to empowerment.

I have this theory that all engineering organizations operate in this fashion which I call pain-driven development. As a company grows, it starts to develop limbs—teams or silos. Each of these limbs has its own pain receptors. Teams operate in a way that minimizes the amount of pain that they feel, it’s human instinct. We make locally optimal decisions to minimize pain and end up following a path of least resistance.

Silos promote pain displacement, which results in a “bulkhead” effect. Product development feels the pain of building software, QA feels the pain of testing software, and Ops feels the pain of running software. This creates broken feedback loops. For instance, developers aren’t feeling the pain Ops is feeling trying to run their software. We just throw things over the wall and it becomes an empathy problem.

This leads to misaligned incentives because each team will optimize for the pain that they feel. How do you expect developers to care about quality if they’re not on the hook? Similarly, how do you expect them to care about operability if they’re not on the hook? Developers won’t build truly reliable software until they are on-call for it and directly responsible. However, responsibility requires empowerment. You can’t have one without the other. You can’t ask someone to care about something and fix it without also giving them the power to do so. Most Ops teams simply haven’t done enough to empower and offload responsibility onto development teams.

Products enable ownership. We move away from Ops as masters of production responsible for everything and push that responsibility onto dev teams. They are the experts for their services. They are best equipped to deal with problems that arise. But we provide the tools they need to diagnose and resolve those problems on their own.

Products maintain control through enablement—enabling teams to follow best practices for builds, testing, deploys, support, and compliance. Compliance and other SDLC requirements have to be encoded into the tools and processes. These are things developers won’t empathize with or simply won’t understand. Rather than giving them a long list of things they have to do, we take as many of those things as we can and bake them into our products. If you use these tools or follow these processes, you’ll get a lot of this stuff for free. This reduces risk and accelerates development.

Similarly, we can’t allow all of the special snowflakes to happen. We have to control that explosion of stuff. To do this, we use pain-driven development to our advantage by creating paths of least resistance. Using standardized patterns, application shapes, and infrastructure services, we can setup “paths” to both make it easier to reach production and meet the goals of the business. As a developer, if you follow this path, your life will be a lot easier and you’ll feel less pain. If you deviate from that path, things get much harder—and painful.

We end up with a set “menu” of standard application shapes and infrastructure. If teams want to deviate and go off-menu, it’s on them to make a case for it. For example, if I want to introduce Erlang into our stack, it’s on my team and me to present the case for that. Part of this might mean we help build and maintain the tools needed to support that. If there is a compelling enough case or enough teams are making similar asks, we can start to standardize new shapes.

Note that we aren’t necessarily mandating technologies, but we’re leveraging pain-driven development to work in our favor.

Products in Practice

Next, I’m going to look at this idea of Operations through the lens of product in a bit more detail. We’ll see what this might actually look like in practice, again using Workiva as a bit of a case study.

Below is the high-level flow that I think about, from code on laptop to code in production.

Starting with the Build and continuous integration stage, this workflow tends to look something like the following. A developer pushes a change to a branch in a code repository, e.g. GitHub. This triggers a few things to happen. First, the build process, which runs unit/integration tests and builds artifacts. This, in turn, might trigger a QA and/or compliance process. At the same time, we have code reviews happening. All of these processes provide feedback to the developer to quickly iterate.

Workiva has a lot of automated processes built into the developer workflow, some off-the-shelf and some built in-house. For example, when a PR is opened, a security scanner runs which does static analysis and looks for various security vulnerabilities. This can flag a security review when a closer look is needed. Likewise, there is code coverage, automated builds, unit tests, and integration tests, Docker image builds, and compliance checks. The screenshots below come from an open-source repo showing some of these products in practice.

For compliance reasons, Workiva requires at least one other person sign-off on code changes. GitHub provides pretty good support for this. Code reviewers provide their feedback, developers work through that feedback, and, once satisfied, reviewers give their “plus one.”

The screenshot below shows some of the automated processes Workiva relies on in the developer workflow: Travis CI, Codecov, Smithy (which is Workiva’s internal build system), Skynet (automated testing), Rosie (automated compliance controls, e.g. do you have code reviews, security reviews, other SDLC compliance requirements?), and Aviary (the security scanner). Once all of these have passed, the PR is automatically labeled with “Merge Requirements Met” and the change can be merged into master.

There are a couple things worth pointing out with this workflow. First, the build plan is part of the code and not baked into some build tool. This allows dev teams to fully control their builds. Second, you noticed that Workiva has very deep integration with GitHub. This has allowed them to build automated controls into the development process, which speeds up the developer’s workflow while reducing risk.

Next, we move on to the Release stage. This flow looks something like the following:

The developer tags a branch for release, which triggers a build process for creating the artifact. This may have a QA process which then promotes the artifact to a development artifact repository. As you may have noticed, Workiva has a lot of compliance requirements since they deal with companies’ pre-financial data, so there is typically a sign-off process at various stages involving different parties like Release Management, QA, Security, etc. Depending on your compliance controls, this might just be clicking a button to promote an artifact to a production repository. From there, it can actually be deployed to a production environment.

With this workflow, artifact tagging, building, and promotion is all automated. It’s also important we have processes around security. Container and machine image auditing is automated as well as security patching for OS updates, etc. For example, this workflow might use something like Packer to automate AMI building. Finally, the artifact sign-off is streamlined for the various parties involved, if not fully automated.

Now we’re ready to actually deploy our application. This is a key part of self-service and “owning” a product. This allows a team to configure their application and, ideally, deploy it themselves to production. Initially, this might be handled by a Release Management team who actually clicks the deploy button, but as you become more confident in your processes and your tools become more mature, more of this responsibility can be pushed onto the development teams.

This is also where control comes into play. For instance, I may be allowed to configure my application to use 1GB of RAM, but if I need 1TB, I may need to get additional sign-off.

Self-service deploys and self-service configuration—with guard rails—are an important part of continuous deployment. Additionally, infrastructure provisioning should be automated. No more submitting tickets for a nameless Ops person to provision and configure servers, VMs, or other resources—no ticket-driven development.

I’ve been deliberate about not prescribing particular solutions for some of these problems. You might be using Kubernetes or ECS to orchestrate containers, it doesn’t really matter. These should mostly be implementation details. What does matter, though, is having good abstractions around certain implementation details. For example, Workiva was meticulous about building some layers around workload scheduling. This allowed them at one point to switch from using Fleet to ECS to manage containers with virtually no impact to developers. With the amount of churn that happens in tech, it’s important not to tie yourself too heavily to any one implementation. Instead, think about the APIs you expose for your infrastructure and consider those the deliverable.

Finally, we need to operate our service in production, another important part of ownership. There are a lot of products here, so we’ll just look at a cross section.

Logging is arguably the most important part of how we figure out what is happening in our systems. For this reason, Workiva built structured logging and metrics specs and language libraries implementing these specs. As a developer, this made it easy to simply pull in the library for your language and get structured, contextual logging for free. The other half to this was building out a data pipeline. Basically all metadata at Workiva went into Amazon Kinesis, including logs, metrics, and traces. First, this allowed us to reuse the same infrastructure for all of this data, from the agents running on the machines to the pipeline itself. Second, it allowed us to fan this data out to different backend systems—Splunk, SumoLogic, Datadog, Stackdriver, BigQuery, as well as various internal tools. This is probably one of the most important things you can do with your infrastructure.

Other continuous operations tools include telemetry, tracing, health checks, alerting, and more sophisticated production tools like canary deploys, A/B testing, and traffic shadowing. Some might refer to these as tools for testing in production. Realistically, once you reach a certain scale, testing in production is the only real alternative to the proliferation of deployment environments.

It’s worth mentioning that you do not need to build all of these products yourself. In fact, you shouldn’t. Many off-the-shelf solutions just need glued together. However, I’ve also come to realize that it’s often the “glue” that is important. That is to say, taking some large, commercial off-the-shelf solution and introducing it into a company is frequently rife with headaches. It’s like Jira, a big Frankenstein product that attempts to solve everyone’s problems and, in doing so, solves none of them particularly well. This is why I tend to favor small, modular solutions that can be composed. But it also highlights why there is a cultural aspect to this.

If you think the solution to your ailments is some magical product—maybe a CI/CD pipeline or Kubernetes or something else—you’re misguided. If anything, most problems are cultural, not technical in nature. Technology will not fix your broken culture! The products are not the endgame, they are a means to an end. And the products need to fit the company, its culture, its architecture, and its constraints. It’s tempting to take something you see on Hacker News and introduce it into your stack, but you have to be careful.

Likewise, it’s tempting to dive straight into the deep-end, automate everything, and build out a highly sophisticated infrastructure. But it’s important to start small and evolve over time. My approach to this is get the workflow correct, start manual, then automate more and more over time.

Wrapping Up

Specialization leads to misalignment and broken feedback loops, but it’s an important part of scaling a business. The question is: how do we specialize?

We know the traditional Ops model does not scale—devs will always out-demand capacity in this reactive model. Not only this, the siloing creates an empathy problem. DevOps attempts to help with this by tightening feedback loops and building empathy. NewOps takes this further by empowering teams and providing autonomy. It’s not a replacement for DevOps, it’s an evolution of it. It’s applying a product mindset to the traditional Ops model.

The future of Ops is taking Combined Engineering to its logical conclusion. As such, Ops teams should be redefining their vision from being masters of production to enablers of production. Just like with QA, Ops capabilities need to be embedded within dev teams, but the caveat is they need to be enabled! This is the direction Operations is headed. Software is eating the world, which means both up and down the stack. NewOps treats Ops like a product team whose product, effectively, is infrastructure. It’s creating guard rails, not walls—taking SDLC and compliance controls and encoding them into products rather than giving devs a laundry list of things, having them run the gauntlet through a long, drawn-out development process, and having a gatekeeper at the end.

Offloading responsibility helps correct and scale feedback loops. In my opinion, this is how we scale specialization. Operations isn’t going away, it’s just getting a product manager.

There and Back Again: Why PaaS Is Passé (And Why It’s Not)

In 10 years nobody will be talking about Kubernetes. Not because people stopped using it or because it fell out of favor, but because it became utility. Containers, Kubernetes, service meshes—they’ll all be there, the same way VMs, hypervisors, and switches will be. Compute is a commodity, and I don’t care how my workload runs so long as it meets my business’s SLOs and other requirements. Within AWS alone, there are now innumerable ways to run a compute workload.

This was the promise of Platform as a Service (PaaS): provide a pre-built runtime where you simply plug in your application and the rest—compute, networking, storage—is handled for you. Heroku (2007), Google App Engine (2008), OpenShift (2011), and Cloud Foundry (2011) all come to mind. But PaaS has, in many ways, become a sort of taboo in recent years. As a consultant working with companies either in the cloud or looking to move to the cloud, I’ve found PaaS to almost be a trigger word; the wince from clients upon its utterance is almost palpable. It’s hard to pin down exactly why this is the case, but I think there are a number of reasons which range from entirely legit to outright FUD.

There is often a funny cognitive dissonance with these companies who recoil at the mention of PaaS. After unequivocally rejecting the idea for reasons like vendor lock-in and runtime restrictions (again, some of these are legitimate concerns), they will describe, in piecemeal fashion, their own half-baked idea of a PaaS. “Well, we’ll use Kubernetes to handle compute, ELK stack for logging, Prometheus for metrics, OpenTracing for distributed tracing, Redis for caching…”, and so the list goes on. Not to mention there tends to be a bias on build over buy. And we need to somehow provide all of these things as a self-service platform to developers.

While there are ongoing efforts to democratize the cloud and provide reference architectures of sorts, the fact is there are no standards and the proliferation of tools and technologies continues to expand at a rapid pace. On the other hand, as certain tools emerge, such as Kubernetes, the patterns and practices around them have naturally lagged behind. The serverless movement bears this out further. Serverless is the microservice equivalent for PaaS but with a lot less tooling and operations maturity. This is an exciting time, but the cloud has become—without a doubt—an unnavigable wasteland. Even with all the things at your disposal today, it’s still a ton of work to build and operate what is essentially your own PaaS.

But technology is cyclical and the cloud is no different. This evolution, in some sense, parallels what happened with the NoSQL movement. Eric Brewer discusses this in his RICON 2012 talk. When you cut through the hype, NoSQL was about giving developers more control at the expense of less pre-packaged functionality, but it was not intended to be the end game or an alternative to SQL. It’s about two different, equally valid world views: top-down and bottom-up. The top-down view is looking at a model and its semantics and then figuring out what you need to do to implement it. With a relational database, this is using SQL to declaratively construct our model. The bottom-up view is about the layering of primitive components into something more complex. For example, modern databases like CockroachDB present a SQL abstraction on top of a transactional layer on top of a replication layer on top of a simple key-value-store layer. NoSQL gives us a reusable storage component with a lot of flexibility and, over time, as we add more and more pieces on top, we get something that looks more like a database. We start with low-level layers, but the end goal is still the same: nice, user-friendly semantics. I would argue the same thing is happening with PaaS.

What the major cloud providers are doing is unbundling the PaaS. We have our compute, our cluster scheduler, our databases and caches, our message queues, and other components. What’s missing is the glue—the standards and tools that tie these things together into a coherent, manageable unit—a PaaS. Everything old is new again. What we will see is the rebundling of these components gradually happen over time as those standards and tools emerge. Tools like AWS Fargate and Google App Engine Flexible Environment are a step in that direction (Google really screwed up by calling it App Engine Flex because of all the PaaS baggage associated with the App Engine name). The container is just the interface. However, that’s only the start.

PaaS and serverless are great because they truly accelerate application development and reduce operations overhead. However, the trade-off is: we become constrained. For example, with App Engine, we were initially constrained to certain Google Cloud APIs, such as Cloud Datastore and Task Queues, and specific language runtimes. Over time, this has improved, notably, with Cloud SQL, and now today we can use custom runtimes. Similarly, PaaS gives us service autoscaling, high availability, and critical security patches for free, but we lose a degree of control over compute characteristics and workload-processing patterns.

In a sense, what a PaaS offers is an opinionated framework for running applications. Opinionated is good if you want to be productive, but it’s limiting once you have a mature product. What we want are the benefits of PaaS with a bit more flexibility. A PaaS provides us a top-down template from which we can start, but we want to be able to tweak that to our needs. Kubernetes is a key part of that template, but it’s ultimately just a means to an end.

This is why I think no one will be talking about Kubernetes in 10 years. Hopefully by then it’s just not that interesting. If it still is, we’re not done yet.

Infrastructure Engineering in the 21st Century

Infrastructure engineering is an inherently treacherous problem space because it’s core to so many things. Systems today are increasingly distributed and increasingly complex but are built on unreliable components and will continue to be. This includes unreliable networks and faulty hardware. The 21st century engineer understands failure is routine.

Naturally, application developers would rather not have to think about low-level failure modes so they can focus on solving the problem at hand. Infrastructure engineers are then tasked with competing goals: provide enough abstraction to make application development tractable and provide enough reliability to make subsystems useful. The second goal often comes with an additional proviso in that there must be sufficient reliability without sacrificing performance to the point of no longer being useful. Anyone who has worked on enterprise messaging systems can tell you that these goals are often contradictory. The result is a wall of sand intended to keep the developer’s feet dry from the incoming tide. The 21st century engineer understands that in order to play in the sand, we all need to be comfortable getting our feet a little wet from time to time.

With the deluge of technology becoming available today, it’s tempting to introduce it all into your stack. Likewise, engineers are never happy. Left unchecked, we will hyper optimize and iterate into oblivion. It’s a problem I call “innovating to a fault.” Relying on “it’s done when it’s done” is a great way to ship vaporware. Have tangible objectives, make them high-level, and realize things change and evolve over time. Frame the concrete things you’re doing today within the context of those objectives. There’s a difference between Agile micromanagey roadmaps and having a clear vision. Determine when to innovate and when not to. Not Invented Here syndrome can be a deadly disease. Take inventory of what’s being built, make sure it ties back to your objectives, and avoid falling prey to tech pop culture. Optimize for the right problems. The 21st century engineer understands that you are not defined by your tools, you are defined by what you produce at the end of the day.

The prevalence of microservice architecture has made production tooling and instrumentation more important than ever. Teams should take ownership of their systems. If you’re not willing to stand by your work, don’t ship it. However, just because something falls outside of your system’s boundaries doesn’t mean it’s not your problem. If you rely on it, own it. Don’t be afraid to roll up your sleeves and dive into someone else’s code. The 21st century engineer understands that they live and die by the code they have in production, and if they don’t run anything in production, they aren’t really an engineer at all.

The way in which we design systems today is different from the way we designed them in the 20th century and the way we will design them in the future. There is a vast amount of research that has gone into computer science and related fields dating back to the invention of the modern computer. Research from the 50’s, 60’s, all the way up to today shows that system design always is an evolving process. Compiling this body of knowledge together provides an invaluable foundation from which we can build. The 21st century engineer understands that without a deeper understanding of that foundation or with a blind trust, we are only as good as our sand castle.

It’s our responsibility as software engineers, as system designers, as programmers to use this knowledge. Our job is not to build systems or write code, our job is to solve problems, of which code is often a byproduct. No one cares about the code you write, they care about the problems you solve. More specifically, they care about the business problems you solve. The 21st century engineer understands that if we’re not thinking about our solutions end to end, we’re not really doing our job.

Engage to Assuage

Abstraction is important. It’s how humans deal with complexity. You shouldn’t have to understand every little intricate detail behind how your system works. It would take years to do so. But abstraction comes at a cost. You agree to the abstraction’s interface, you place your trust in it, and then you remove it from your mind. That is, until it fails—and abstractions of sufficient complexity will fail. After all, we are building atop unreliable components. Also, a layer of abstraction doesn’t provide any guarantees in higher levels above it, which often results in some false assumptions.

We cannot understand how everything will work, but we should have enough understanding of how it will not work. More plainly, we should understand the cost of the abstractions we use so that we can pay for them with confidence. This doesn’t mean giving up on abstraction but engaging with the complexity that it manages.

I’ve written before about how distributed systems are a UX problem. They’re also a design problem. And a development problem. And an ops problem. And a business problem. The point is they are everyone’s problem because they are complex, and things that are sufficiently complex eventually leak. There is no airtight abstraction in this world. Without understanding limitations and trade-offs, without using the knowledge and research that has come before us, without thinking end to end, we set ourselves up for failure. If we’re going to call ourselves engineers, let’s start acting like it. Nothing is a black box to the 21st century engineer.