Take It to the Limit: Considerations for Building Reliable Systems

Complex systems usually operate in failure mode. This is because a complex system typically consists of many discrete pieces, each of which can fail in isolation (or in concert). In a microservice architecture where a given function potentially comprises several independent service calls, high availability hinges on the ability to be partially available. This is a core tenet behind resilience engineering. If a function depends on three services, each with a reliability of 90%, 95%, and 99%, respectively, partial availability could be the difference between 99.995% reliability and 84% reliability (assuming failures are independent). Resilience engineering means designing with failure as the normal.

Anticipating failure is the first step to resilience zen, but the second is embracing it. Telling the client “no” and failing on purpose is better than failing in unpredictable or unexpected ways. Backpressure is another critical resilience engineering pattern. Fundamentally, it’s about enforcing limits. This comes in the form of queue lengths, bandwidth throttling, traffic shaping, message rate limits, max payload sizes, etc. Prescribing these restrictions makes the limits explicit when they would otherwise be implicit (eventually your server will exhaust its memory, but since the limit is implicit, it’s unclear exactly when or what the consequences might be). Relying on unbounded queues and other implicit limits is like someone saying they know when to stop drinking because they eventually pass out.

Rate limiting is important not just to prevent bad actors from DoSing your system, but also yourself. Queue limits and message size limits are especially interesting because they seem to confuse and frustrate developers who haven’t fully internalized the motivation behind them. But really, these are just another form of rate limiting or, more generally, backpressure. Let’s look at max message size as a case study.

Imagine we have a system of distributed actors. An actor can send messages to other actors who, in turn, process the messages and may choose to send messages themselves. Now, as any good software engineer knows, the eighth fallacy of distributed computing is “the network is homogenous.” This means not all actors are using the same hardware, software, or network configuration. We have servers with 128GB RAM running Ubuntu, laptops with 16GB RAM running macOS, mobile clients with 2GB RAM running Android, IoT edge devices with 512MB RAM, and everything in between, all running a hodgepodge of software and network interfaces.

When we choose not to put an upper bound on message sizes, we are making an implicit assumption (recall the discussion on implicit/explicit limits from earlier). Put another way, you and everyone you interact with (likely unknowingly) enters an unspoken contract of which neither party can opt out. This is because any actor may send a message of arbitrary size. This means any downstream consumers of this message, either directly or indirectly, must also support arbitrarily large messages.

How can we test something that is arbitrary? We can’t. We have two options: either we make the limit explicit or we keep this implicit, arbitrarily binding contract. The former allows us to define our operating boundaries and gives us something to test. The latter requires us to test at some undefined production-level scale. The second option is literally gambling reliability for convenience. The limit is still there, it’s just hidden. When we don’t make it explicit, we make it easy to DoS ourselves in production. Limits become even more important when dealing with cloud infrastructure due to their multitenant nature. They prevent a bad actor (or yourself) from bringing down services or dominating infrastructure and system resources.

In our heterogeneous actor system, we have messages bound for mobile devices and web browsers, which are often single-threaded or memory-constrained consumers. Without an explicit limit on message size, a client could easily doom itself by requesting too much data or simply receiving data outside of its control—this is why the contract is unspoken but binding.

Let’s look at this from a different kind of engineering perspective. Consider another type of system: the US National Highway System. The US Department of Transportation uses the Federal Bridge Gross Weight Formula as a means to prevent heavy vehicles from damaging roads and bridges. It’s really the same engineering problem, just a different discipline and a different type of infrastructure.

The August 2007 collapse of the Interstate 35W Mississippi River bridge in Minneapolis brought renewed attention to the issue of truck weights and their relation to bridge stress. In November 2008, the National Transportation Safety Board determined there had been several reasons for the bridge’s collapse, including (but not limited to): faulty gusset plates, inadequate inspections, and the extra weight of heavy construction equipment combined with the weight of rush hour traffic.

The DOT relies on weigh stations to ensure trucks comply with federal weight regulations, fining those that exceed restrictions without an overweight permit.

The federal maximum weight is set at 80,000 pounds. Trucks exceeding the federal weight limit can still operate on the country’s highways with an overweight permit, but such permits are only issued before the scheduled trip and expire at the end of the trip. Overweight permits are only issued for loads that cannot be broken down to smaller shipments that fall below the federal weight limit, and if there is no other alternative to moving the cargo by truck.

Weight limits need to be enforced so civil engineers have a defined operating range for the roads, bridges, and other infrastructure they build. Computers are no different. This is the reason many systems enforce these types of limits. For example, Amazon clearly publishes the limits for its Simple Queue Service—the max in-flight messages for standard queues is 120,000 messages and 20,000 messages for FIFO queues. Messages are limited to 256KB in size. Amazon KinesisApache KafkaNATS, and Google App Engine pull queues all limit messages to 1MB in size. These limits allow the system designers to optimize their infrastructure and ameliorate some of the risks of multitenancy—not to mention it makes capacity planning much easier.

Unbounded anything—whether its queues, message sizes, queries, or traffic—is a resilience engineering anti-pattern. Without explicit limits, things fail in unexpected and unpredictable ways. Remember, the limits exist, they’re just hidden. By making them explicit, we restrict the failure domain giving us more predictability, longer mean time between failures, and shorter mean time to recovery at the cost of more upfront work or slightly more complexity.

It’s better to be explicit and handle these limits upfront than to punt on the problem and allow systems to fail in unexpected ways. The latter might seem like less work at first but will lead to more problems long term. By requiring developers to deal with these limitations directly, they will think through their APIs and business logic more thoroughly and design better interactions with respect to stability, scalability, and performance.

You Own Your Availability

There’s been a lot of discussion around “availability” lately. It’s often trumpeted with phrases like “you own your availability,” meaning there is no buck-passing when it comes to service uptime. The AWS outage earlier this week served as a stark reminder that, while owning your availability is a commendable ambition, for many it’s still largely owned by Amazon and the like.

In order to “own” your availability, it’s important to first understand what “availability” really means. Within the context of distributed-systems theory, availability is usually discussed in relation to the CAP theorem. Formally, CAP defines availability as a liveness property: “every request received by a non-failing node in the system must result in a response.” This is a weak definition for two reasons. First, the proviso “every request received by a non-failing node” means that a system in which all nodes have failed is trivially available.  Second, Gilbert and Lynch stipulate no upper bound on latency, only that operations eventually return a response. This means an operation could take weeks to complete and availability would not be violated.

Martin Kleppmann points out these issues in his recent paper “A Critique of the CAP Theorem.” I don’t think there is necessarily a problem with the formalizations made by CAP, just a matter of engineering practicality. Kleppmann’s critique recalls a pertinent quote from Leslie Lamport on the topic of liveness:

Liveness properties are inherently problematic. The question of whether a real system satisfies a liveness property is meaningless; it can be answered only by observing the system for an infinite length of time, and real systems don’t run forever. Liveness is always an approximation to the property we really care about. We want a program to terminate within 100 years, but proving that it does would require the addition of distracting timing assumptions. So, we prove the weaker condition that the program eventually terminates. This doesn’t prove that the program will terminate within our lifetimes, but it does demonstrate the absence of infinite loops.

Despite the pop culture surrounding it, CAP is not meant to neatly classify systems. It’s meant to serve as a jumping-off point from which we can reason from the ground up about distributed systems and the inherent limitations associated with them. It’s a reality check.

Practically speaking, availability is typically described in terms of “uptime” or the proportion of time which requests are successfully served. Brewer refers to this as “yield,” which is the probability of completing a request. This is the metric that is normally measured in “nines,” such as “five-nines availability.”

In the presence of faults there is typically a tradeoff between providing no answer (reducing yield) and providing an imperfect answer (maintaining yield, but reducing harvest).

However, this definition is only marginally more useful than CAP’s since it still doesn’t provide an upper bound on computation.

CAP is better used as a starting point for system design and understanding trade-offs than as a tool for reasoning about availability because it doesn’t really account for real availability. “Harvest” and “yield” show that availability is really a probabilistic property and that the trade with consistency is usually a gradient. But availability is much more nuanced than CAP’s “are we serving requests?” and harvest/yield’s “how many requests?” In practice, availability equates to SLAs. How many requests are we serving? At what rate? At what latency? At what percentiles? These things can’t really be formalized into a theorem like CAP because they are empirically observed, not properties of an algorithm.

Availability is specified by an SLA but observed by outside users. Unlike consistency, which is a property of the system and maintained by algorithm invariants, availability is determined by the client. For example, one user’s requests are served but another user’s are not. To the first user, the system is completely available.

To truly own your availability, you have to own every piece of infrastructure from the client to you, in addition to the infrastructure your system uses. Therefore, you can’t own your availability anymore than you can own Comcast’s fiber or Verizon’s 4G network. This is obviously impractical, if not impossible, but it might also be taking “own your availability” a bit too literally.

What “you own your availability” actually means is “you own your decisions.” Plain and simple. You own the decision to use AWS. You own the decision to use DynamoDB. You own the decision to not use multiple vendors. Owning your availability means making informed decisions about technology and vendors. “What is the risk/reward for using this database?” “Does using a PaaS/IaaS incur vendor lock-in? What happens when that service goes down?” It also means making informed decisions about the business. “What is the cost of our providers not meeting their SLAs? Is it cost-effective to have redundant providers?”

An SLA is not an insurance policy or a hedge against the business impact of an outage, it’s merely a refund policy. Use them to set expectations and make intelligent decisions, but don’t bank the business on them. Availability is not a timeshare. It’s not at will. You can’t just pawn it off, just like you can’t redirect your tech support to Amazon or Google.

It’s impossible to own your availability because there are too many things left to probability, too many unknowns, and too many variables outside of our control. Own as much as you can predict, as much as you can control, and as much as you can afford. The rest comes down to making informed decisions, hoping for the best, and planning for the worst.

Designed to Fail

When it comes to reliability engineering, people often talk about things like fault injection, monitoring, and operations runbooks. These are all critical pieces for building systems which can withstand failure, but what’s less talked about is the need to design systems which deliberately fail.

Reliability design has a natural progression which closely follows that of architectural design. With monolithic systems, we care more about preventing failure from occurring. With service-oriented architectures, controlling failure becomes less manageable, so instead we learn to anticipate it. With highly distributed microservice architectures where failure is all but guaranteed, we embrace it.

What does it mean to embrace failure? Anticipating failure is understanding the behavior when things go wrong, building systems to be resilient to it, and having a game plan for when it happens, either manual or automated. Embracing failure means making a conscious decision to purposely fail, and it’s essential for building highly available large-scale systems.

A microservice architecture typically means a complex web of service dependencies. One of SOA’s goals is to isolate failure and allow for graceful degradation. The key to being highly available is learning to be partially available. Frequently, one of the requirements for partial availability is telling the client “no.” Outright rejecting service requests is often better than allowing them to back up because, when dealing with distributed services, the latter usually results in cascading failure across dependent systems.

While designing our distributed messaging service at Workiva, we made explicit decisions to drop messages on the floor if we detect the system is becoming overloaded. As queues become backed up, incoming messages are discarded, a statsd counter is incremented, and a backpressure notification is sent to the client. Upon receiving this notification, the client can respond accordingly by failing fast, exponentially backing off, or using some other flow-control strategy. By bounding resource utilization, we maintain predictable performance, predictable (and measurable) lossiness, and impede cascading failure.

Other techniques include building kill switches into service calls and routers. If an overloaded service is not essential to core business, we fail fast on calls to it to prevent availability or latency problems upstream. For example, a spam-detection service is not essential to an email system, so if it’s unavailable or overwhelmed, we can simply bypass it. Netflix’s Hystrix has a set of really nice patterns for handling this.

If we’re not careful, we can often be our own worst enemy. Many times, it’s our own internal services which cause the biggest DoS attacks on ourselves. By isolating and controlling it, we can prevent failure from becoming widespread and unpredictable. By building in backpressure mechanisms and other types of intentional “failure” modes, we can ensure better availability and reliability for our systems through graceful degradation. Sometimes it’s better to fight fire with fire and failure with failure.

From Mainframe to Microservice: An Introduction to Distributed Systems

I gave a talk at Iowa Code Camp this weekend on distributed systems. It was primarily an introduction to them, so it explored some core concepts at a high level.  We looked at why distributed systems are difficult to build (right), the CAP theorem, consensus, scaling shared data and CRDTs.

There was some interest in making the slides available online. I’m not sure how useful they are without narration, but here they are anyway for posterity.