Product Development is a Trust Fall

A couple weeks ago, Marty Cagan gave an outstanding talk at CraftConf on why products fail despite having great engineering teams. In it, he calls out many of the common mistakes made by teams, and I think there is an underlying theme: trust.

Product development is a trust fall. In order to be successful, a chain of trust must be established from the business all the way down to the engineers. If any point in that chain is compromised, the integrity of the product—and specifically its success—is put in jeopardy.

Engineers will innovate. Trust them. Engineers will discover requirements. Trust them. Engineers will identify risks. Trust them.

This trust must be symmetrical. The business must trust its product managers, who must trust the business. Product managers must trust the engineers, who must trust the product managers. Each level in this hierarchy must act as its own trust anchor. Trust is assumed, not derived. To say the opposite would imply your system of hiring and firing is fundamentally flawed. If you do not trust your teams, your teams will not trust you.

Engineers will prioritize. Trust them. Engineers will deliver. Trust them. Engineers will fail. Let them.

Product development is a trust fall. When you let go, your team will catch you. And when they don’t, they’ll pick you up, dust you off, and say, “we’ll make an adjustment.” Fail fast but recover faster. The more times you fall and hit the ground, the more adjustments we make. The quicker we repeat this process, the less time you spend on the ground. Shame on the teams that spend days, weeks, months planning their fall, ensuring everything is in place, only to find the ground has moved.

It’s inexcusable to say you fail fast when it’s really a slow, prolonged death in product, in technology, or in execution, yet it’s surprisingly common. In order to innovate, you have to fail first. In order to build an effective team, you have to fail first. In order to produce a successful product, you have to fail first. The number one fatal mistake teams make is not recognizing when they’ve failed or being too proud to admit it. This is what Agile is actually about. It’s not about roadmaps or requirements gathering or user stories or stand-ups. It’s about failing and adjusting, failing and adjusting, failing and adjusting. Agile is micro failure on a macro level. As Cagan remarks, the biggest visible distinguisher of a great team is no roadmap.

A roadmap is essentially dooming your team to get out a small number of things that will almost certainly—most of them—not work.

Developers need to be part of the ideation process from day one. The customer is usually wrong. They often don’t know what they want or what’s possible. Developers are invested in the technology and understand its capabilities and limitations. Trust them.

If you’re just using your developers to code, you’re only getting about half their value.

I’ve said it before but without a focused vision, a product will fail. Without embracing new ideas and technology, a company will become irrelevant. Developers must be closely involved with both aspects in order to be successful. Innovate, fail, adjust, deliver. Repeat.

Product development is a trust fall. The key is letting go.

Writing Good Code

There’s no shortage of people preaching the importance of good code. Indeed, many make a career of it. The resources available are equally endless, but lately I’ve been wondering how to extract the essence of building high-quality systems into a shorter, more concise narrative. This is actually something I’ve thought about for a while, but I’m just now starting to formulate some ideas into a blog post. The ideas aren’t fully developed, but my hope is to flesh them out further in the future. You can talk about design patterns, abstraction, encapsulation, and cohesion until you’re blue in the face, but what is the essence of good code?

Like any other engineering discipline, quality control is a huge part of building software. This isn’t just ensuring that it “works”—it’s ensuring it works under the complete range of operating conditions, ensuring it’s usable, ensuring it’s maintainable, ensuring it performs well, and ensuring a number of other characteristics. Verifying it “works” is just a small part of a much larger picture. Anybody can write code that works, but there’s more to it than that. Software is more malleable than most other things. Not only does it require longevity, it requires giving in to that malleability. If it doesn’t, you end up with something that’s brittle and broken. Because of this, it’s vital we test for correctness and measure for quality.

SCRAP for Quality

Quality is a very subjective thing. How can one possibly measure it? Code complexity and static analysis tooling come to mind, and these are deservedly valued, but it really just scratches the surface. How do we narrow an immensely broad topic like “quality” into a set of tangible, quantifiable goals? This is really the crux of the problem, but we can start by identifying a sort of checklist or guidelines for writing software. This breaks that larger problem into smaller, more digestible pieces. The checklist I’ve come up with is called SCRAP, an acronym defined below. It’s unlikely to be comprehensive, but I think it covers most, if not all, of the key areas.

Scalability Plan for growth
Complexity Plan for humans
Resiliency Plan for failure
API Plan for integration
Performance Plan for execution

Each of these items is itself a blog post, so this is only a brief explanation. There is definitely overlap between some of these facets, and there are also multiple dimensions to some.

Scalability is a plan for growth—in code, in organization, in architecture, and in workload. Without it, you reach a point where your system falls over, whether it’s because of a growing userbase, a growing codebase, or any number of other reasons. It’s also worth pointing out that without the ‘S’, all you have is CRAP. This also helps illustrate some of the overlap between these areas of focus as it leads into Complexity, which is a plan for humans. Scalability is about technology scale and demand scale, but it’s also about people scale. As your team grows or as your company grows, how do you manage that growth at the code level?

Planning for people doesn’t just mean managing growth, it also means managing complexity. If code is overly complex, it’s difficult to maintain, it’s difficult to extend, and it’s difficult to fix. If systems are overly complex, they’re difficult to deploy, difficult to manage, and difficult to monitor. Plan for humans, not machines.

Resiliency is a strategy for fault tolerance. It’s a plan for failure. What happens when you crash? What happens when a service you depend on crashes? What happens when the database is unavailable? What happens when the network is unreliable? Systems of all kind need to be designed with the expectation of failure. If you’re not thinking about failure at the code level, you’re not thinking about it enough.

One thing you should be noticing is that “people” is a cross-cutting concern. After all, it’s people who design the systems, and it’s people who write the code. While API is a plan for integration, it’s people who integrate the pieces. This is about making your API a first-class citizen. It doesn’t matter if it’s an internal API, a library API, or a RESTful API. It doesn’t matter if it’s for first parties or third parties. As a programmer, your API is your user interface. It needs to be clean. It needs to be sensible. It needs to be well-documented. If those integration points aren’t properly thought out, the integration will be more difficult than it needs to be.

The last item on the checklist is Performance. I originally defined this as a plan for speed, but I realized there’s a lot more to performance than doing things fast. It’s about doing things well, which is why I call Performance a plan for execution. Again, this has some overlap with Resiliency and Scalability, but it’s also about measurement. It’s about benchmarking and profiling. It’s about testing at scale and under failure because testing in a vacuum doesn’t mean much. It’s about optimization.

This brings about the oft-asked question: how do I know when and where to optimize? While premature optimization might be the root of all evil, it’s not a universal law. Optimize along the critical path and outward from there only as necessary. The further you get from that critical path, the more wasted effort it’s going to end up being. It depreciates quickly, so don’t lose sight of your optimization ROI. This will enable you to ship quickly and ship quality code. But once you ship, you’re not done measuring! It’s more important than ever that you continue to measure in production. Use performance and usage-pattern data to drive intelligent decisions and intelligent iteration. The payoff is that this doesn’t just apply to code decisions, it applies to all decisions. This is where the real value of measuring comes through. Decisions that aren’t backed by data aren’t decisions, they’re impulses. Don’t be impulsive, be empirical.

Going Forward

There is work to be done with respect to quantifying the items on this checklist. However, I strongly suspect even just thinking about them, formally or informally, will improve the overall quality of your code by an equally-unmeasurable order of magnitude. If your code doesn’t pass this checklist, it’s tech debt. Sometimes that’s okay, but remember that tech debt has compounding interest. If you don’t pay it off, you will eventually go bankrupt.

It’s not about being a 10x developer. It’s about being a 1x developer who writes 10x code. By that I mean the quality of your code is far more important than its quantity. Quality will outlast and outperform quantity. These guidelines tend to have a ripple effect. Legacy code often breeds legacy-like code. Instilling these rules in your developer culture helps to make engineers cognizant of when they should break the mold, introduce new patterns, or improve existing ones. Bad code begets bad code, and bad code is the atrophy of good developers.

If State Is Hell, SOA Is Satan

More and more companies are describing their success stories regarding the switch to a service-oriented architecture. As with any technological upswing, there’s a clear and palpable hype factor involved (Big Data™ or The Cloud™ anyone?), but obviously it’s not just puff.

While microservices and SOA have seen a staggering rate of adoption in recent years, the mindset of developers often seems to be stuck in the past. I think this is, at least in part, because we seek a mental model we can reason about. It’s why we build abstractions in the first place. In a sense, I would argue there’s a comparison to be made between the explosion of OOP in the early 90’s and today’s SOA trend. After all, SOA is as much about people scale as it is about workload scale, so it makes sense from an organizational perspective.

The Perils of Good Abstractions

While systems are becoming more and more distributed, abstractions are attempting to make them less and less complex. Mesosphere is a perfect example of this, attempting to provide the “datacenter operating system.” Apache Mesos allows you to “program against your datacenter like it’s a single pool of resources.” It’s an appealing proposition to say the least. PaaS like Google App Engine and Heroku offer similar abstractions—write your code without thinking about scale. The problem is you absolutely have to think about scale or you’re bound to run into problems down the road. And while these abstractions are nice, they can be dangerous just the same. Welcome to the perils of good abstractions.

I like to talk about App Engine because I have firsthand experience with it. It’s an easy sell for startups. It handles spinning up instances when you need them, turning them down when you don’t. It’s your app server, database, caching, job scheduler, task queue all in one, and it does it at scale. There’s vendor lock-in, sure, yet it means no ops, no sysadmins, no overhead. Push to deploy. But it’s a leaky abstraction. It has to be. App Engine scales because it’s distributed, but it allows—no, encourages—you to write your system as a monolith. The datastore, memcache, and task queue accesses are masked as RPCs. This is great for our developer mental model, but it will bite you if you’re not careful. App Engine imposes certain limitations to encourage good design; for instance, front-end requests and datastore calls are limited to 60 seconds (it used to be much less), but the leakiness goes beyond that.

RPC is consistently at odds with distributed systems. I would go so far as to say it’s an anti-pattern in many cases. RPC encourages writing synchronous code, but distributed systems are inherently asynchronous. The network is not reliable. The network is not fast. The network is not your friend. Developers who either don’t understand this or don’t realize what’s happening when they make an RPC will write code as if they were calling a function. It will sure as hell look like just calling a function. When we think synchronously, we end up with systems that are slow, fault intolerant, and generally not scalable. To be quite honest, however, this is perfectly acceptable for 90% of startups as they are getting off the ground because they don’t have workloads at meaningful scale.

There’s certainly some irony here. One of the selling points of App Engine is its ability to scale to large amounts of traffic, yet the vast majority of startups would be perfectly suited to scaling up rather than out, perhaps with some failover in place for good measure. Stack Overflow is the poster child of scale-up architecture. In truth, your architecture should be a function of your access patterns, not the other way around (and App Engine is very much tailored to a specific set of access patterns). Nonetheless, it shows that vertical scaling can work. I would bet a lot of startups could sufficiently run on a large, adequately specced machine or maybe a small handful of them.

The cruel irony is that once you hit a certain scale with App Engine, both in terms of your development organization and user base, you’ve reached a point where you have to migrate off it. And if your data model isn’t properly thought out, you will without a doubt hit scale problems. It’s to the point where you need someone with deep knowledge of how App Engine works in order to build quality systems on it. Good luck hiring a team of engineers who understand it. GAE is great at accelerating you to 100 mph, but you better have some nice airbags for the brick wall it launches you into. In fairness, this is a problem every org hits—Conway’s law is very much a reality and every startup has growing pains. To be clear, this isn’t a jab at GAE, which is actually very effective at accelerating a product using little capital and can sustain long-term success given the right use case. Instead, I use it to illustrate a point.

Peering Through the Abstraction

Eventually SOA makes sense, but our abstractions can cause problems if we don’t understand what’s going on behind the curtain (hence the leakiness). Partial failure is all but guaranteed, and latency, partitioning, and other network pressure happens all the time.

Ken Arnold is famed with once saying “state is hell” in reference to designing distributed systems. In the past, I’ve written how scaling shared data is hard, but with SOA it’s practically a requirement. Ken is right though—state is hell, and SOA is fundamentally competing with consistency. The FLP Impossibility result and the CAP theorem can prove it formally, but really this should be intuitively obvious if we accept the laws of physics.

On the other hand, if you store information that I can’t reconstruct, then a whole host of questions suddenly surface. One question is, “Are you now a single point of failure?” I have to talk to you now. I can’t talk to anyone else. So what happens if you go down?

To deal with that, you could be replicated. But now you have to worry about replication strategies. What if I talk to one replicant and modify some data, then I talk to another? Is that modification guaranteed to have already arrived there? What is the replication strategy? What kind of consistency do you need—tight or loose? What happens if the network gets partitioned and the replicants can’t talk to each other? Can anybody proceed?

Essentially, the more stateful your system is, the harder it’s going to be to scale it because distributing that state introduces a rich tapestry of problems. In practice, we often can’t eliminate state wholesale, but basically everything that can be stateless should be stateless.

Making servers disposable allows you a great deal of flexibility. Former Netflix Cloud Architect Adrian Cockcroft articulates this idea well:

You want to think of servers like cattle, not pets. If you have a machine in production that performs a specialized function, and you know it by name, and everyone gets sad when it goes down, it’s a pet. Instead you should think of your servers like a herd of cows. What you care about is how many gallons of milk you get. If one day you notice you’re getting less milk than usual, you find out which cows aren’t producing well and replace them.

This is effectively how App Engine achieves its scalability. With lightweight, stateless, and disposable instances, it can spin them up and down on the fly without worrying about being in an invalid state.

App Engine also relies on eventual consistency as the default model for datastore interactions. This makes queries fast and highly available, while snapshot isolation can be achieved using entity-group transactions if necessary. The latter, of course, can result in a lot of contention and latency. Yet, people seem to have a hard time grappling with the reality of eventual consistency in distributed systems. State is hell, but calling SOA “satan” is clearly a hyperbole. It is a tough problem nevertheless.

A State of Mind

In the situations where we need state, we have to reconcile with the realities of distributed systems. This means understanding the limitations and accepting the complexities, not papering over them. It doesn’t mean throwing away abstractions. Fortunately, distributed computing is the focus of a lot of great research, so there are primitives with which we can build: immutability, causal ordering, eventual consistency, CRDTs, and other ideas.

As long as we recognize the trade-offs, we can design around them. The crux is knowing they exist in the first place. We can’t have ACID semantics while remaining highly available, but we can use Highly Available Transactions to provide strong-enough guarantees. At the same time, not all operations require coordination or concurrency control. The sooner we view eventual consistency as a solution and not a consequence, the sooner we can let go of this existential crisis. Other interesting research includes BOOM, which seeks to provide a high-level, declarative approach to distributed programming.

State might be hell, but it’s a hell we have to live. I don’t advocate an all-out microservice architecture for a company just getting its start. The complications far outweigh any benefits to be gained, but it becomes a necessity at a certain point. The key is having an exit strategy. PaaS providers make this difficult due to vendor lock-in and architectural constraints. Weigh their advantages carefully.

Once you do transition to a SOA, make as many of those services, or the pieces backing them, as stateless as possible. For those which aren’t stateless, know that the problem typically isn’t novel. These problems have been solved or are continuing to be solved in new and interesting ways. Academic research is naturally at the bleeding edge with industry often lagging behind. OOP concepts date back to as early as the 60’s but didn’t gain widespread adoption until several decades later. Distributed computing is no different. SOA is just a state of mind.

Not Invented Here

Engineers love engineering things. The reason is self-evident (and maybe self-fulfilling—why else would you be an engineer?). We like to think we’re pretty good at solving problems. Unfortunately, this mindset can, on occasion, yield undesirable consequences which might not be immediately apparent but all the while damaging.

Developers are all in tune with the idea of “don’t reinvent the wheel,” but it seems to be eschewed sometimes, deliberately or otherwise. People don’t generally write their own merge sort, so why would they write their own consensus protocol? Anecdotally speaking, they do.

Not-Invented-Here Syndrome is a very real thing. In many cases, consciously or not, it’s a cultural problem. In others, it’s an engineering one. Camille Fournier’s blog post on ZooKeeper helps to illustrate this point and provide some context. In it, she describes why some distributed systems choose to rely on external services, such as ZooKeeper, for distributed coordination, while others build in their own coordination logic.

We draw a parallel between distributed systems and traditional RDBMSs, which typically implement their own file system and other low-level facilities. Why? Because it’s their competitive advantage. SQL databases sell because they offer finely tuned performance, and in order to do that, they need to control these things that the OS otherwise provides. Distributed databases like Riak sell because they own the coordination logic, which helps promote their competitive advantage. This follows what Joel Spolsky says about NIH Syndrome in that “if it’s a core business function—do it yourself, no matter what.”

If you’re developing a computer game where the plot is your competitive advantage, it’s OK to use a third party 3D library. But if cool 3D effects are going to be your distinguishing feature, you had better roll your own.

This makes a lot of sense. My sorting algorithm is unlikely to provide me with a competitive edge, but something else might, even if it’s not particularly novel.

So in some situations, homegrown is justifiable, but that’s not always the case. Redis’ competitive advantage is its predictably low latencies and data structures. Does it make sense for it to implement its own clustering and leader election protocols? Maybe, but this is where NIH can bite you. If what you’re doing is important and there’s precedent, lean on existing research and solutions. Most would argue write safety is important, and there is certainly precedent for leader election. Why not leverage that work? Things like Raft, Paxos, and Zab provide solutions which are proven using formal methods and are peer reviewed. That doesn’t mean new solutions can’t be developed, but they generally require model checking and further scrutiny to ensure correctness. Otherwise, you’ll inevitably run into problems. Implementing our own solutions can provide valuable insight, but leave them at home if they’re not rigorously approached. Rolling your own and calling it “good enough” is dishonest to your users if it’s not properly communicated.

Elasticsearch is another interesting case to look at. You might say Elasticsearch’s competitive advantage is its full-text search engine, but it’s not. Like Solr, it’s built on Lucene. Elasticsearch was designed from the ground-up to be distributed. This is what gives it a leg up over Solr and other similar search servers where horizontal scaling and fault tolerance were essentially tacked on. In a way, this resembles what happened with Redis, where failover and clustering were introduced as an afterthought. However, unlike Redis, which chose to implement its own failover coordination and cluster-membership protocol, Solr opted to use ZooKeeper as an external coordinator.

We see that Elasticsearch’s core advantage is its distributed nature. Following that notion, it makes sense for it to own that coordination, which is why its designers chose to implement their own internal cluster membership, ZenDisco. But it turns out writing cluster-membership protocols is really fucking hard, and unless you’ve written proofs for it, you probably shouldn’t do it at all. The analogy here would be writing your own encryption algorithm—there’s tons of institutional knowledge which has laid the groundwork for solutions which are well-researched and well-understood. That knowledge should be embraced in situations like this.

I don’t mean to pick on Redis and Elasticsearch. They’re both excellent systems, but they serve as good examples for this discussion. The problem is that users of these systems tend to overlook the issues exposed by this mentality. Frankly, few people would know problems exist unless they are clearly documented by vendors (and not sales people) and even then, how many people actually read the docs cover-to-cover? It’s essential we know a system’s shortcomings and edge cases so we can recognize which situations to apply it and, more important, which we should not.

You don’t have to rely on an existing third-party library or service. Believe it or not, this isn’t a sales pitch for ZooKeeper. If it’s a core business function, it probably makes sense to build it yourself as Joel describes. What doesn’t make sense, however, is to build out whatever that is without being cognizant of conventional wisdom. I’m amazed at how often people are willing to throw away institutional knowledge, either because they don’t seek it out or they think they can do better (without formal verification). If I have seen further, it is by standing on the shoulders of giants.

Sometimes Kill -9 Isn’t Enough

If there’s one thing to know about distributed systems, it’s that they have to be designed with the expectation of failure. It’s also safe to say that most software these days is, in some form, distributed—whether it’s a database, mobile app, or enterprise SaaS. If you have two different processes talking to each other, you have a distributed system, and it doesn’t matter if those processes are local or intergalactically displaced.

Marc Hedlund recently had a great post on Stripe’s game-day exercises where they block off an afternoon, take a blunt instrument to their servers, and see what happens. We’re talking like abruptly killing instances here—kill -9, ec2-terminate-instances, yanking on the damn power cord—that sort of thing. Everyone should be doing this type of stuff. You really don’t know how your system behaves until you see it under failure conditions.

Netflix uses Chaos Monkey to randomly terminate instances, and they do it in production. That takes some balls, but you know you have a pretty solid system when you’re comfortable killing live production servers. At Workiva, we have a middleware we use to inject datastore and other RPC errors into Google App Engine. Building resilient systems is an objective concern, but we still have a ways to go.

We need to be pessimists and design for failure, but injecting failure isn’t enough. Sure, every so often shit hits the proverbial fan, and we need to be tolerant of that. But more often than not, that fan is just a strong headwind.

Simulating failure is a necessary element for building reliable distributed systems, but system behavior isn’t black and white, it’s a continuum. We build our system in a vacuum and (hopefully) test it under failure, but we should also be observing it in this gray area. How does it perform with unreliable network connections? Low bandwidth? High latency? Dropped packets? Out-of-order packets? Duplicate packets? Not only do our systems need to be fault-tolerant, they need to be pressure-tolerant.

Simulating Pressure

There are a lot of options to do these types of “pressure” simulations. On Linux, we can use iptables to accomplish this.

This will drop incoming and outgoing packets with a 10% probability. Alternatively, we can use tc to simulate network latency, limited bandwidth, and packet loss.

The above adds an additional 250ms of latency with 10% packet loss and a bandwidth limit of 1Mbps. Likewise, on OSX and BSD we can use ipfw or pfctl.

Here we inject 500ms of latency while limiting bandwidth to 1Mbps and dropping 10% of packets.

These are just some very simple traffic-shaping examples. Several of these tools allow you to perform even more advanced testing, like adding variation and correlation values. This would allow you to emulate burst packet loss and other situations we often encounter. For instance, with tc, we can add jitter to the network latency.

This adds 50±20ms of latency. Since network latency typically isn’t uniform, we can apply a normal distribution to achieve a more realistic simulation.

Now we get a nice bell curve which is probably more representative of what we see in practice. We can also use tc to re-order, duplicate, and corrupt packets.

I’ve been working on an open-source tool which attempts to wrap these controls up so you don’t have to memorize the options or worry about portability. It’s pretty primitive and doesn’t support much yet, but it provides a thin layer of abstraction.

Conclusion

Injecting failure is crucial to understanding systems and building confidence, but like good test coverage, it’s important to examine suboptimal-but-operating scenarios. This isn’t even 99th-percentile stuff—this is the type of shit your users deal with every single day. If you can’t handle sustained latency and sporadic network partitions, who cares if you tolerate instance failure? The tools are at our disposal, they just need to be leveraged.