Product Development is a Trust Fall

A couple weeks ago, Marty Cagan gave an outstanding talk at CraftConf on why products fail despite having great engineering teams. In it, he calls out many of the common mistakes made by teams, and I think there is an underlying theme: trust.

Product development is a trust fall. In order to be successful, a chain of trust must be established from the business all the way down to the engineers. If any point in that chain is compromised, the integrity of the product—and specifically its success—is put in jeopardy.

Engineers will innovate. Trust them. Engineers will discover requirements. Trust them. Engineers will identify risks. Trust them.

This trust must be symmetrical. The business must trust its product managers, who must trust the business. Product managers must trust the engineers, who must trust the product managers. Each level in this hierarchy must act as its own trust anchor. Trust is assumed, not derived. To say the opposite would imply your system of hiring and firing is fundamentally flawed. If you do not trust your teams, your teams will not trust you.

Engineers will prioritize. Trust them. Engineers will deliver. Trust them. Engineers will fail. Let them.

Product development is a trust fall. When you let go, your team will catch you. And when they don’t, they’ll pick you up, dust you off, and say, “we’ll make an adjustment.” Fail fast but recover faster. The more times you fall and hit the ground, the more adjustments we make. The quicker we repeat this process, the less time you spend on the ground. Shame on the teams that spend days, weeks, months planning their fall, ensuring everything is in place, only to find the ground has moved.

It’s inexcusable to say you fail fast when it’s really a slow, prolonged death in product, in technology, or in execution, yet it’s surprisingly common. In order to innovate, you have to fail first. In order to build an effective team, you have to fail first. In order to produce a successful product, you have to fail first. The number one fatal mistake teams make is not recognizing when they’ve failed or being too proud to admit it. This is what Agile is actually about. It’s not about roadmaps or requirements gathering or user stories or stand-ups. It’s about failing and adjusting, failing and adjusting, failing and adjusting. Agile is micro failure on a macro level. As Cagan remarks, the biggest visible distinguisher of a great team is no roadmap.

A roadmap is essentially dooming your team to get out a small number of things that will almost certainly—most of them—not work.

Developers need to be part of the ideation process from day one. The customer is usually wrong. They often don’t know what they want or what’s possible. Developers are invested in the technology and understand its capabilities and limitations. Trust them.

If you’re just using your developers to code, you’re only getting about half their value.

I’ve said it before but without a focused vision, a product will fail. Without embracing new ideas and technology, a company will become irrelevant. Developers must be closely involved with both aspects in order to be successful. Innovate, fail, adjust, deliver. Repeat.

Product development is a trust fall. The key is letting go.

Writing Good Code

There’s no shortage of people preaching the importance of good code. Indeed, many make a career of it. The resources available are equally endless, but lately I’ve been wondering how to extract the essence of building high-quality systems into a shorter, more concise narrative. This is actually something I’ve thought about for a while, but I’m just now starting to formulate some ideas into a blog post. The ideas aren’t fully developed, but my hope is to flesh them out further in the future. You can talk about design patterns, abstraction, encapsulation, and cohesion until you’re blue in the face, but what is the essence of good code?

Like any other engineering discipline, quality control is a huge part of building software. This isn’t just ensuring that it “works”—it’s ensuring it works under the complete range of operating conditions, ensuring it’s usable, ensuring it’s maintainable, ensuring it performs well, and ensuring a number of other characteristics. Verifying it “works” is just a small part of a much larger picture. Anybody can write code that works, but there’s more to it than that. Software is more malleable than most other things. Not only does it require longevity, it requires giving in to that malleability. If it doesn’t, you end up with something that’s brittle and broken. Because of this, it’s vital we test for correctness and measure for quality.

SCRAP for Quality

Quality is a very subjective thing. How can one possibly measure it? Code complexity and static analysis tooling come to mind, and these are deservedly valued, but it really just scratches the surface. How do we narrow an immensely broad topic like “quality” into a set of tangible, quantifiable goals? This is really the crux of the problem, but we can start by identifying a sort of checklist or guidelines for writing software. This breaks that larger problem into smaller, more digestible pieces. The checklist I’ve come up with is called SCRAP, an acronym defined below. It’s unlikely to be comprehensive, but I think it covers most, if not all, of the key areas.

Scalability Plan for growth
Complexity Plan for humans
Resiliency Plan for failure
API Plan for integration
Performance Plan for execution

Each of these items is itself a blog post, so this is only a brief explanation. There is definitely overlap between some of these facets, and there are also multiple dimensions to some.

Scalability is a plan for growth—in code, in organization, in architecture, and in workload. Without it, you reach a point where your system falls over, whether it’s because of a growing userbase, a growing codebase, or any number of other reasons. It’s also worth pointing out that without the ‘S’, all you have is CRAP. This also helps illustrate some of the overlap between these areas of focus as it leads into Complexity, which is a plan for humans. Scalability is about technology scale and demand scale, but it’s also about people scale. As your team grows or as your company grows, how do you manage that growth at the code level?

Planning for people doesn’t just mean managing growth, it also means managing complexity. If code is overly complex, it’s difficult to maintain, it’s difficult to extend, and it’s difficult to fix. If systems are overly complex, they’re difficult to deploy, difficult to manage, and difficult to monitor. Plan for humans, not machines.

Resiliency is a strategy for fault tolerance. It’s a plan for failure. What happens when you crash? What happens when a service you depend on crashes? What happens when the database is unavailable? What happens when the network is unreliable? Systems of all kind need to be designed with the expectation of failure. If you’re not thinking about failure at the code level, you’re not thinking about it enough.

One thing you should be noticing is that “people” is a cross-cutting concern. After all, it’s people who design the systems, and it’s people who write the code. While API is a plan for integration, it’s people who integrate the pieces. This is about making your API a first-class citizen. It doesn’t matter if it’s an internal API, a library API, or a RESTful API. It doesn’t matter if it’s for first parties or third parties. As a programmer, your API is your user interface. It needs to be clean. It needs to be sensible. It needs to be well-documented. If those integration points aren’t properly thought out, the integration will be more difficult than it needs to be.

The last item on the checklist is Performance. I originally defined this as a plan for speed, but I realized there’s a lot more to performance than doing things fast. It’s about doing things well, which is why I call Performance a plan for execution. Again, this has some overlap with Resiliency and Scalability, but it’s also about measurement. It’s about benchmarking and profiling. It’s about testing at scale and under failure because testing in a vacuum doesn’t mean much. It’s about optimization.

This brings about the oft-asked question: how do I know when and where to optimize? While premature optimization might be the root of all evil, it’s not a universal law. Optimize along the critical path and outward from there only as necessary. The further you get from that critical path, the more wasted effort it’s going to end up being. It depreciates quickly, so don’t lose sight of your optimization ROI. This will enable you to ship quickly and ship quality code. But once you ship, you’re not done measuring! It’s more important than ever that you continue to measure in production. Use performance and usage-pattern data to drive intelligent decisions and intelligent iteration. The payoff is that this doesn’t just apply to code decisions, it applies to all decisions. This is where the real value of measuring comes through. Decisions that aren’t backed by data aren’t decisions, they’re impulses. Don’t be impulsive, be empirical.

Going Forward

There is work to be done with respect to quantifying the items on this checklist. However, I strongly suspect even just thinking about them, formally or informally, will improve the overall quality of your code by an equally-unmeasurable order of magnitude. If your code doesn’t pass this checklist, it’s tech debt. Sometimes that’s okay, but remember that tech debt has compounding interest. If you don’t pay it off, you will eventually go bankrupt.

It’s not about being a 10x developer. It’s about being a 1x developer who writes 10x code. By that I mean the quality of your code is far more important than its quantity. Quality will outlast and outperform quantity. These guidelines tend to have a ripple effect. Legacy code often breeds legacy-like code. Instilling these rules in your developer culture helps to make engineers cognizant of when they should break the mold, introduce new patterns, or improve existing ones. Bad code begets bad code, and bad code is the atrophy of good developers.

Not Invented Here

Engineers love engineering things. The reason is self-evident (and maybe self-fulfilling—why else would you be an engineer?). We like to think we’re pretty good at solving problems. Unfortunately, this mindset can, on occasion, yield undesirable consequences which might not be immediately apparent but all the while damaging.

Developers are all in tune with the idea of “don’t reinvent the wheel,” but it seems to be eschewed sometimes, deliberately or otherwise. People don’t generally write their own merge sort, so why would they write their own consensus protocol? Anecdotally speaking, they do.

Not-Invented-Here Syndrome is a very real thing. In many cases, consciously or not, it’s a cultural problem. In others, it’s an engineering one. Camille Fournier’s blog post on ZooKeeper helps to illustrate this point and provide some context. In it, she describes why some distributed systems choose to rely on external services, such as ZooKeeper, for distributed coordination, while others build in their own coordination logic.

We draw a parallel between distributed systems and traditional RDBMSs, which typically implement their own file system and other low-level facilities. Why? Because it’s their competitive advantage. SQL databases sell because they offer finely tuned performance, and in order to do that, they need to control these things that the OS otherwise provides. Distributed databases like Riak sell because they own the coordination logic, which helps promote their competitive advantage. This follows what Joel Spolsky says about NIH Syndrome in that “if it’s a core business function—do it yourself, no matter what.”

If you’re developing a computer game where the plot is your competitive advantage, it’s OK to use a third party 3D library. But if cool 3D effects are going to be your distinguishing feature, you had better roll your own.

This makes a lot of sense. My sorting algorithm is unlikely to provide me with a competitive edge, but something else might, even if it’s not particularly novel.

So in some situations, homegrown is justifiable, but that’s not always the case. Redis’ competitive advantage is its predictably low latencies and data structures. Does it make sense for it to implement its own clustering and leader election protocols? Maybe, but this is where NIH can bite you. If what you’re doing is important and there’s precedent, lean on existing research and solutions. Most would argue write safety is important, and there is certainly precedent for leader election. Why not leverage that work? Things like Raft, Paxos, and Zab provide solutions which are proven using formal methods and are peer reviewed. That doesn’t mean new solutions can’t be developed, but they generally require model checking and further scrutiny to ensure correctness. Otherwise, you’ll inevitably run into problems. Implementing our own solutions can provide valuable insight, but leave them at home if they’re not rigorously approached. Rolling your own and calling it “good enough” is dishonest to your users if it’s not properly communicated.

Elasticsearch is another interesting case to look at. You might say Elasticsearch’s competitive advantage is its full-text search engine, but it’s not. Like Solr, it’s built on Lucene. Elasticsearch was designed from the ground-up to be distributed. This is what gives it a leg up over Solr and other similar search servers where horizontal scaling and fault tolerance were essentially tacked on. In a way, this resembles what happened with Redis, where failover and clustering were introduced as an afterthought. However, unlike Redis, which chose to implement its own failover coordination and cluster-membership protocol, Solr opted to use ZooKeeper as an external coordinator.

We see that Elasticsearch’s core advantage is its distributed nature. Following that notion, it makes sense for it to own that coordination, which is why its designers chose to implement their own internal cluster membership, ZenDisco. But it turns out writing cluster-membership protocols is really fucking hard, and unless you’ve written proofs for it, you probably shouldn’t do it at all. The analogy here would be writing your own encryption algorithm—there’s tons of institutional knowledge which has laid the groundwork for solutions which are well-researched and well-understood. That knowledge should be embraced in situations like this.

I don’t mean to pick on Redis and Elasticsearch. They’re both excellent systems, but they serve as good examples for this discussion. The problem is that users of these systems tend to overlook the issues exposed by this mentality. Frankly, few people would know problems exist unless they are clearly documented by vendors (and not sales people) and even then, how many people actually read the docs cover-to-cover? It’s essential we know a system’s shortcomings and edge cases so we can recognize which situations to apply it and, more important, which we should not.

You don’t have to rely on an existing third-party library or service. Believe it or not, this isn’t a sales pitch for ZooKeeper. If it’s a core business function, it probably makes sense to build it yourself as Joel describes. What doesn’t make sense, however, is to build out whatever that is without being cognizant of conventional wisdom. I’m amazed at how often people are willing to throw away institutional knowledge, either because they don’t seek it out or they think they can do better (without formal verification). If I have seen further, it is by standing on the shoulders of giants.

No More Ninjas

How does a software company attract talent? Compensation? That’s how they attract people. Free lunches and foosball tables? Keep guessing.

The most effective way for a company to bag top-tier engineers is simple: let developers be developers.

Engineers Drive Innovation

Software is a symbiotic creature, and there are two ways a product is built: from the top down and the bottom up. Top-down development means that requirements are curated by and flow from the business, product owners, and managers, downward to the engineers. With the latter, developers explore new ideas and use technology that may be outside the organization’s standard gamut. Ideas for new products or features are born and pushed up to product owners where they can be cultivated.

Both of these methods must strike a balance for a company and its products to be successful. Without a focused vision, a product will fail. Without embracing new ideas and technology, a company will become irrelevant.

Open Source is King

How an organization perceives OSS is paramount to developers. Companies that contribute and maintain open source projects tend to attract talented software engineers. Just look at some of the top repositories on GitHub. Unfortunately, there can sometimes be an eternal struggle between engineers and lawyers.

It’s equally important that a company supports the use of OSS in its own products. I’ve worked on projects where the use of open source code was discouraged in favor of homegrown solutions. This is dangerously senseless considering most mature, open source projects are battle tested and have large community support.

Developers want to work at companies that embrace open source, which is a push-pull dynamic.

Let Me Work, Dammit

I do all of my development on a MacBook Pro running OSX. Some of my coworkers use similar hardware configurations with various flavors of Linux. Back when I worked with .NET, I used Windows. The CLI is now my home, however, and Vim is Old Reliable sitting in the driveway. Some prefer IntelliJ, some PyCharm, and yet others Sublime Text—to each his own.

What I’m getting at is everyone has their preferred setup for building software. If your product does not have technical constraints resulting from the stack you’re using, don’t force me out of my element. Let me use the environment I’m comfortable with because it’s the environment I’m productive with.

No More Ninjas

Tech recruiters: no more code ninjas, no more Jedis, no more rock stars, no more gurus. These words are an unfortunate by-product of the startup culture. You may have the best of intentions, but to me, these words are red flags and marginally patronizing.

Perhaps I’m overly cynical, but I tend to translate job postings of this nature as “Seeking to exploit naive, young programmer to build a startup by working unsustainable hours. You’ll get equity!” It’s the hard sell.

We get it, you’re looking for skilled programmers, but no self-respecting programmer will call him or herself a rock star. And if they do, not only does it blow expectations out of proportion, it makes them look like a dick. Let your company, its products, and its culture speak for themselves. If you aren’t finding the “rock stars” you were looking for, it wasn’t meant to be.

Let Developers Be Developers

Yes, I’m biased. Developers are opinionated—I certainly am. Nonetheless, I would hazard to guess many top tech companies tend to address several of the points I’ve touched on. Call it headstrong, obstinate, whatever, but these are things I like to get a feel for when interviewing with a company. Others may disagree, but I suspect you wouldn’t be too hard-pressed to find many who take the craft seriously share similar views.

The Art of Software

I stared at my coffee as a friend asked a mildly profound question: “what is your greatest passion in life?” Strangely, I thought of an exchange that occurred just a few months earlier while I was at the bank, opening an account for my software consulting company.

“What is the nature of your company’s business?” the banker asked.

“Building software,” my partner and I managed to respond with. Now suddenly fascinated, she looked away from her computer and at us, as if we had abruptly sprouted wings.

“Like Facebook?”

I did my best to suppress a laugh and simply nodded. I could hardly blame her. The 30-something-year-old banker’s knowledge of the domain likely consisted of the horrendous software they used at the bank, Angry Birds, and whatever insight she gleaned from watching The Social Network. About equivalent to my knowledge of banking.

I looked up from my coffee. Naturally, my answer would immediately gravitate towards software, but how to frame it in a way that made sense?

Building something that impacts people—making their lives easier, more enjoyable, or something to that effect—that’s really the goal of any engineer, but it’s an amazing ability that software developers possess. The modern-day alchemist, quite literally turning electrons into social media and flight simulators and bank transactions—things that delight or captivate; things that help us exist. We’re the janitors of data, or is it plumbers? But we’re also artists.

Software is a craft, an art, and not one that everyone is capable of doing (but certainly capable of learning). But what is art? Something that exhibits beauty in aesthetics, perhaps visually, perhaps audibly. We think of Michelangelo’s painting of the Sistine Chapel or Beethoven’s Fifth Symphony. We probably don’t think of Twitter or Facebook and certainly not the ATM you withdrew money from.

Web designers may argue that websites can be beautiful, and they’re right. Software can be both a visual and aural stimulus, but these are really just superficial observations. The same way I say “Huh, that’s pretty cool” after seeing the Sistine Chapel. Others may appreciate it more, or less.

Many would argue that the purpose of art is to evoke emotion from its audience. There’s probably a lot of truth to that, but to me, art exists on several different levels. There’s the immediate aesthetic beauty—what the eyes see and what the ears hear. There’s the emotions that it evokes from its audience—this makes me happy, this makes me sad, this makes me intrigued. And then there’s the appreciation of the craft: painters admiring a painting, not because of its obvious beauty, but because of the technical prowess it demonstrates. Software is no different.

I read something once that said software developers are never impressed. I don’t think that’s entirely true, or at least the entirety of the truth. Beyond the superficial veneer of beauty, there are the inner workings of incredibly complex systems, riddled with algorithms, design patterns, and all the things that make programmers swoon. And they run like well-oiled machines. That is art, but art that only others who share the trade can enjoy. There is elegance in code like there is elegance in the prose of a novel. The difference is in those who are able to marvel at it.

The great thing about engineering, software or otherwise, is the problem solving involved. There is no end to the amount of exceptionally difficult problems that need solving, and the way in which those problems are solved is an art in itself.

I doubt many people associate the words “art” and “software,” but there is as much creativity and craftsmanship in building software as there is engineering. It’s this drive, to build great products that affect people, that I consider my passion and my art.