FIFO, Exactly-Once, and Other Costs

There’s been a lot of discussion about exactly-once semantics lately, sparked by the recent announcement of support for it in Kafka 0.11. I’ve already written at length about strong guarantees in messaging.

My former coworker Kevin Sookocheff recently made a post about ordered and exactly-once message delivery as it relates to Amazon SQS. It does a good job of illustrating what the trade-offs are, and I want to drive home some points.

In the article, Kevin shows how FIFO delivery is really only meaningful when you have one single-threaded publisher and one single-threaded receiver. Amazon’s FIFO queues allow you to control how restrictive this requirement is by applying ordering on a per-group basis. In other words, we can improve throughput if we can partition work into different ordered groups rather than a single totally ordered group. However, FIFO still effectively limits throughput on a group to a single publisher and single subscriber. If there are multiple publishers, they have to coordinate to ensure ordering is preserved with respect to our application’s semantics. On the subscriber side, things are simpler because SQS will only deliver messages in a group one at a time in order amongst subscribers.

Amazon’s FIFO queues also have an exactly-once processing feature which deduplicates messages within a five-minute window. Note, however, that there are some caveats with this, the obvious one being duplicate delivery outside of the five-minute window. A mission-critical system would have to be designed to account for this possibility. My argument here is if you still have to account for it, what’s the point unless the cost of detecting duplicates is prohibitively expensive? But to be fair, five minutes probably reduces the likelihood enough to the point that it’s useful and in those rare cases where it fails, the duplicate is acceptable.

The more interesting caveat is that FIFO queues do not guarantee exactly-once delivery to consumers (which, as we know, is impossible). Rather, they offer exactly-once processing by guaranteeing that once a message has successfully been acknowledged as processed, it won’t be delivered again. It’s up to applications to ack appropriately. When a message is delivered to a consumer, it remains in the queue until it’s acked. The visibility timeout prevents other consumers from processing it. With FIFO queues, this also means head-of-line blocking for other messages in the same group.

Now, let’s assume a subscriber receives a batch of messages from the queue, processes them—perhaps by storing some results to a database—and then sends an acknowledgement back to SQS which removes them from the queue. It’s entirely possible that during that process step a delay happens—a prolonged GC pause, crash, network delay, whatever. When this happens, the visibility timeout expires and the messages are redelivered and, potentially, reprocessed. What has to happen here is essentially cooperation between the queue and processing step. We might do this by using a database transaction to atomically process and acknowledge the messages. An alternative, yet similar, approach might be to use a write-ahead-log-like strategy whereby the consuming system reads messages from SQS and transactionally stores them in a database for future processing. Once the messages have been committed, the consumer deletes the messages from SQS. In either of these approaches, we’re basically shifting the onus of exactly-once processing onto an ACID-compliant relational database.

Note that this is really how Kafka achieves its exactly-once semantics. It requires end-to-end cooperation for exactly-once to work. State changes in your application need to be committed transactionally with your Kafka offsets.

As Kevin points out, FIFO SQS queues offer exactly-once processing only if 1) publishers never publish duplicate messages wider than five minutes apart and 2) consumers never fail to delete messages they have processed from the queue. Solving either of these problems probably requires some kind of coordination between the application and queue, likely in the form of a database transaction. And if you’re using a database either as the message source, sink, or both, what are exactly-once FIFO queues actually buying you? You’re paying a seemingly large cost in throughput for little perceived value. Your messages are already going through some sort of transactional boundary that provides ordering and uniqueness.

Where I see FIFO and exactly-once semantics being useful is when talking to systems which cannot cooperate with the end-to-end transaction. This might be a legacy service or a system with side effects, such as sending an email. Often in the case of these “distributed workflows”, latency is a lower priority and humans can be involved in various steps. Other use cases might be scheduled integrations with legacy batch processes where throughput is known a priori. These can simply be re-run when errors occur.

When people describe a messaging system with FIFO and exactly-once semantics, they’re usually providing a poor description of a relational database with support for ACID transactions. Providing these semantics in a messaging system likely still involves database transactions, it’s just more complicated. It turns out relational databases are really good at ensuring invariants like exactly-once.

I’ve picked on Kafka a bit in the past, especially with the exactly-once announcement, but my issue is not with Kafka itself. Kafka is a fantastic technology. It’s well-architected, battle-tested, and the team behind it is talented and knows the space well. My issue is more with some of the intangible costs associated with it. The same goes for similar systems (like exactly-once FIFO SQS queues). Beyond just the operational complexity (which Confluent is attempting to tackle with its Kafka-as-a-service), you have to get developer understanding. This is harder than it sounds in any modestly-sized organization. That’s not to say that developers are dumb or incapable of understanding, but the fact is your average developer is simply not thinking about all of the edge cases brought on by operating distributed systems at scale. They see “exactly-once FIFO queues” in SQS or “exactly-once delivery” in Kafka and take it at face value. They don’t read beyond the headline. They don’t look for the caveats. That’s why I took issue with how Kafka claimed to do the impossible with exactly-once delivery when it’s really exactly-once processing or, as I’ve come to call it, “atomic processing.” Henry Robinson put it best when talking about the Kafka announcement:

If I were to rewrite the article, I’d structure it thus: “exactly-once looks like atomic broadcast. Atomic broadcast is impossible. Here’s how exactly-once might fail, and here’s why we think you shouldn’t be worried about it.” That’s a harder argument for users to swallow…

Basically “exactly-once” markets better. It’s something developers can latch onto, but it’s also misleading. I know it’s only a matter of time before people start linking me to the Confluent post saying, “see, exactly-once is easy!” But this is just pain deferral. On the contrary, exactly-once semantics require careful construction of your application, assume a closed, transactional world, and do not support the case where I think people want exactly-once the most: side effects.

Interestingly, one of my chief concerns about Kafka’s implementation was what the difficulty of ensuring end-to-end cooperation would be in practice. Side effects into downstream systems with no support for idempotency or transactions could make it difficult. Jay’s counterpoint to this was that the majority of users are using good old-fashioned relational databases, so all you really need to do is commit your offsets and state changes together. It’s not trivial, but it’s not that much harder than avoiding partial updates on failure if you’re updating multiple tables. This brings us back to two of the original points of contention: why not merely use the database for exactly-once in the first place and what about legacy systems?

That’s not to say exactly-once semantics, as offered in systems like SQS and Kafka, are not useful. I think we just need to be more conscientious of the other costs and encourage developers to more deeply understand the solution space—too much sprinkling on of Kafka or exactly-once or FIFO and not enough thinking about the actual business problem. Too much prescribing of solutions and not enough describing of problems.

My thanks to Kevin Sookocheff and Beau Lyddon for reviewing this post.

You Cannot Have Exactly-Once Delivery Redux

A couple years ago I wrote You Cannot Have Exactly-Once Delivery. It stirred up quite a bit of discussion and was even referenced in a book, which I found rather surprising considering I’m not exactly an academic. Recently, the topic of exactly-once delivery has again become a popular point of discussion, particularly with the release of Kafka 0.11, which introduces support for idempotent producers, transactional writes across multiple partitions, and—wait for it—exactly-once semantics.

Naturally, when this hit Hacker News, I received a lot of messages from people asking me, “what gives?” There’s literally a TechCrunch headline titled, Confluent achieves holy grail of “exactly once” delivery on Kafka messaging service (Jay assures me, they don’t write the headlines). The myth has been disproved!

First, let me say what Confluent has accomplished with Kafka is an impressive achievement and one worth celebrating. They made a monumental effort to implement these semantics, and it paid off. The intention of this post is not to minimize any of that work but to try to clarify a few key points and hopefully cut down on some of the misinformation and noise.

“Exactly-once delivery” is a poor term. The word “delivery” is overloaded. Frankly, I think it’s a marketing word. The better term is “exactly-once processing.” Some call the distinction pedantic, but I think it’s important and there is some nuance. Kafka did not solve the Two Generals Problem. Exactly-once delivery, at the transport level, is impossible. It doesn’t exist in any meaningful way and isn’t all that interesting to talk about. “We have a word for infinite packet delay—outage,” as Jay puts it. That’s why TCP exists, but TCP doesn’t care about your application semantics. And in the end, that’s what’s interesting—application semantics. My problem with “exactly-once delivery” is it assumes too much, which causes a lot of folks to make bad assumptions. “Delivery” is a transport semantic. “Processing” is an application semantic.

All is not lost, however. We can still get correct results by having our application cooperate with the processing pipeline. This is essentially what Kafka does, exactly-once processing, and Confluent makes note of that in the blog post towards the end. What does this mean?

To achieve exactly-once processing semantics, we must have a closed system with end-to-end support for modeling input, output, and processor state as a single, atomic operation. Kafka supports this by providing a new transaction API and idempotent producers. Any state changes in your application need to be made atomically in conjunction with Kafka. You must commit your state changes and offsets together. It requires architecting your application in a specific way. State changes in external systems must be part of the Kafka transaction. Confluent’s goal is to make this as easy as possible by providing the platform around Kafka with its streams and connector APIs. The point here is it’s not just a switch you flip and, magically, messages are delivered exactly once. It requires careful construction, application logic coordination, isolating state change and non-determinism, and maintaining a closed system around Kafka. Applications that use the consumer API still have to do this themselves. As Neha puts it in the post, it’s not “magical pixie dust.” This is the most important part of the post and, if it were up to me, would be at the very top.

Exactly-once processing is an end-to-end guarantee and the application has to be designed to not violate the property as well. If you are using the consumer API, this means ensuring that you commit changes to your application state concordant with your offsets as described here.

Side effects into downstream systems with no support for idempotency or distributed transactions make this really difficult in practice I suspect. The argument is that most people are using relational databases that support transactions, but I think there’s still a reasonably large, non-obvious assumption here. Making your event processing atomic might not be easy in all cases. Moreover, every part in your system needs to participate to ensure end-to-end, exactly-once semantics.

Several other messaging systems like TIBCO EMS and Azure Service Bus have provided similar transactional processing guarantees. Kafka, as I understand it, attempts to make it easier and with less performance overhead. That’s a great accomplishment.

What’s really worth drawing attention to is the effort made by Confluent to deliver a correct solution. Achieving exactly-once processing, in and of itself, is relatively “easy” (I use that word loosely). What’s hard is dealing with the range of failures. The announcement shows they’ve done extensive testing, likely much more than most other systems, and have shown that it works and with minimal performance impact.

Kafka provides exactly-once processing semantics because it’s a closed system. There is still a lot of difficulty in ensuring those semantics are maintained across external services, but Confluent attempts to ameliorate this through APIs and tooling. But that’s just it: it’s not exactly-once semantics in a building block that’s the hard thing, it’s building loosely coupled systems that agree on the state of the world. Nevertheless, there is no holy grail here, just some good ole’ fashioned hard work.

Special thanks to Jay Kreps and Sean T. Allen for their feedback on an early draft of this post. Any inaccuracies or opinions are mine alone.

Smart Endpoints, Dumb Pipes

I read an interesting article recently called How do you cut a monolith in half? There are a lot of thoughts in the article that resonate with me and some that I disagree with, prompting this response.

The overall message of the article is don’t use a message broker to break apart a monolith because it’s like a cross between a load balancer and a database, with the disadvantages of both and the advantages of neither. The author argues that message brokers are a popular way to pull apart components over a network because they have low setup cost and provide easy service discovery, but they come at a high operational cost. My response to that is the same advice the author puts forward: it depends.

I think it’s important not to conflate “message broker” and “message queue.” The article uses them interchangeably, but it’s really talking about the latter, which I see as a subset of the former. Queues provide, well, queuing semantics. They try to ensure delivery of a message or, more generally, distribution of work. As the author puts it: “In practice, a message broker is a service that transforms network errors and machine failures into filled disks.” Replace “broker” with “queue” and I agree with this statement. This is really describing systems like RabbitMQ, Amazon SQS, TIBCO EMS, IronMQ, and maybe even Kafka fits into that category.

People are easily seduced by “fat” middleware—systems with more features, more capabilities, more responsibilities—because they think it makes their lives easier, and it might at first. Pushing off more responsibility onto the infrastructure makes the application simpler, but it also makes the infrastructure more complex, more fragile, and more slow. Take exactly-once message delivery, for example. Lots of people want it, but the pursuit of it introduces a host of complexity, overhead (in terms of development, operations, and performance), and risk. The end result is something that, in addition to these things, requires all downstream systems to not introduce duplicates and be mindful about their side effects. That is, everything in the processing pipeline must be exactly-once or nothing is. So typically what you end up with is an approximation of exactly-once delivery. You make big investments to lower the likelihood of duplicates, but you still have to deal with the problem. This might make sense if the cost of having duplicates is high, but that doesn’t seem like the common case. My advice is to always opt for the simple solution. We tend to think of engineering challenges as technical problems when, in reality, they’re often just mindset problems. Usually the technical problems have already been solved if we can just adjust our mindset.

There are a couple things to keep in mind here. The first thing to consider is simply capability lock-in. As you push more and more logic off onto more and more specialized middleware, you make it harder to move off it or change things. The second is what we already hinted at. Even with smart middleware, problems still leak out and you have to handle them at the edge—you’re now being taxed twice. This is essentially the end-to-end argument. Push responsibility to the edges, smart endpoints, dumb pipes, etc. It’s the idea that if you need business-level guarantees, build them into the business layer because the infrastructure doesn’t care about them.

The article suggests for short-lived tasks, use a load balancer because with a queue, you’ll end up building a load balancer along with an ad-hoc RPC system, with extra latency. For long-lived tasks, use a database because with a queue, you’ll be building a lock manager, a database, and a scheduler.

A persistent message queue is not bad in itself, but relying on it for recovery, and by extension, correct behaviour, is fraught with peril.

So why the distinction between message brokers and message queues? The point is not all message brokers need to be large, complicated pieces of infrastructure like most message queues tend to be. This was the reason I gravitated towards NATS while architecting Workiva’s messaging platform and why last month I joined Apcera to work on NATS full time.

When Derek Collison originally wrote NATS it was largely for the reasons stated in the article and for the reasonstalk about frequently. It was out of frustration with the current state of the art. In my opinion, NATS was the first system in the space that really turned the way we did messaging on its head (outside of maybe ZeroMQ). It didn’t provide any strong delivery guarantees, transactions, message persistence, or other responsibilities usually assumed by message brokers (there is a layer that provides some of these things, but it’s not baked into the core technology). Instead, NATS prioritized availability, simplicity, and performance over everything else. A simple technology in a vast sea of complexity (my marketing game is strong).

NATS is no-frills pub/sub. It solves the problem of service discovery and work assignment, assumes no other responsibilities, and gets out of your way. It’s designed to be easy to use, easy to operate, and add minimal latency even at scale so that, unlike many other brokers, it is a good way to integrate your microservices. What makes NATS interesting is what it doesn’t do and what it gains by not doing them. Simplicity is a feature—the ultimate sophistication, according to da Vinci. I call it looking at the negative space.

The article reads:

A protocol is the rules and expectations of participants in a system, and how they are beholden to each other. A protocol defines who takes responsibility for failure.

The problem with message brokers, and queues, is that no-one does.

NATS plays to the strengths of the end-to-end principle. It’s a dumb pipe. Handle failures and retries at the client and NATS will do everything it can to remain available and fast. Don’t rely on fragile guarantees or semantics. Instead, face complexity head-on. The author states what you really want is request/reply, which is one point I disagree on. RPC is a bad abstraction for building distributed systems. Use simple, versatile primitives and embrace asynchrony and messaging.

So yes, be careful about relying on message brokers. How smart should the pipes really be? More to the point, be careful about relying on strong semantics because experience shows few things are guaranteed when working with distributed systems at scale. Err to the side of simple. Make few assumptions of your middleware. Push work out of your infrastructure and to the edges if you care about performance and scalability because nothing is harder to scale (or operate) than slow infrastructure that tries to do too much.

Fast Topic Matching

A common problem in messaging middleware is that of efficiently matching message topics with interested subscribers. For example, assume we have a set of subscribers, numbered 1 to 3:

Subscriber Match Request
1 forex.usd
2 forex.*
3 stock.nasdaq.msft

And we have a stream of messages, numbered 1 to N:

Message Topic
1 forex.gbp
4 forex.eur
5 forex.usd
N stock.nasdaq.msft

We are then tasked with routing messages whose topics match the respective subscriber requests, where a “*” wildcard matches any word. This is frequently a bottleneck for message-oriented middleware like ZeroMQ, RabbitMQ, ActiveMQ, TIBCO EMS, et al. Because of this, there are a number of well-known solutions to the problem. In this post, I’ll describe some of these solutions, as well as a novel one, and attempt to quantify them through benchmarking. As usual, the code is available on GitHub.

The Naive Solution

The naive solution is pretty simple: use a hashmap that maps topics to subscribers. Subscribing involves adding a new entry to the map (or appending to a list if it already exists). Matching a message to subscribers involves scanning through every entry in the map, checking if the match request matches the message topic, and returning the subscribers for those that do.

Inserts are approximately O(1) and lookups approximately O(n*m) where n is the number of subscriptions and m is the number of words in a topic. This means the performance of this solution is heavily dependent upon how many subscriptions exist in the map and also the access patterns (rate of reads vs. writes). Since most use cases are heavily biased towards searches rather than updates, the naive solution—unsurprisingly—is not a great option.

The microbenchmark below compares the performance of subscribe, unsubscribe, and lookup (matching) operations, first using an empty hashmap (what we call cold) and then with one containing 1,000 randomly generated 5-word topic subscriptions (what we call hot). With the populated subscription map, lookups are about three orders of magnitude slower, which is why we have to use a log scale in the chart below.

subscribe unsubscribe lookup
cold 172ns 51.2ns 787ns
hot 221ns 55ns 815,787ns

Inverted Bitmap

The inverted bitmap technique builds on the observation that lookups are more frequent than updates and assumes that the search space is finite. Consequently, it shifts some of the cost from the read path to the write path. It works by storing a set of bitmaps, one per topic, or criteria, in the search space. Subscriptions are then assigned an increasing number starting at 0. We analyze each subscription to determine the matching criteria and set the corresponding bits in the criteria bitmaps to 1. For example, assume our search space consists of the following set of topics:

  • forex.usd
  • forex.gbp
  • forex.jpy
  • forex.eur
  • stock.nasdaq
  • stock.nyse

We then have the following subscriptions:

  • 0 = forex.* (matches forex.usd, forex.gbp, forex.jpy, and forex.eur)
  • 1 = stock.nyse (matches stock.nyse)
  • 2 = *.* (matches everything)
  • 3 = stock.* (matches stock.nasdaq and stock.nyse)

When we index the subscriptions above, we get the following set of bitmaps:

 Criteria 0 1 2 3
forex.usd 1 0 1 0
forex.gbp 1 0 1 0
forex.jpy 1 0 1 0
forex.eur 1 0 1 0
stock.nasdaq 0 0 1 1
stock.nyse 0 1 1 1

When we match a message, we simply need to lookup the corresponding bitmap and check the set bits. As we see below, subscribe and unsubscribe are quite expensive with respect to the naive solution, but lookups now fall well below half a microsecond, which is pretty good (the fact that the chart below doesn’t use a log scale like the one above should be an indictment of the naive hashmap-based solution).

subscribe unsubscribe lookup
cold 3,795ns 198ns 380ns
hot 3,863ns 198ns 395ns

The inverted bitmap is a better option than the hashmap when we have a read-heavy workload. One limitation is it requires us to know the search space ahead of time or otherwise requires reindexing which, frankly, is prohibitively expensive.

Optimized Inverted Bitmap

The inverted bitmap technique works well enough, but only if the topic space is fairly static. It also falls over pretty quickly when the topic space and number of subscriptions are large, say, millions of topics and thousands of subscribers. The main benefit of topic-based routing is it allows for faster matching algorithms in contrast to content-based routing, which can be exponentially slower. The truth is, to be useful, your topics probably consist of,, stock.nasdaq.msft, stock.nasdaq.aapl, etc., not stock.nyse and stock.nasdaq. We could end up with an explosion of topics and, even with efficient bitmaps, the memory consumption tends to be too high despite the fact that most of the bitmaps are quite sparse.

Fortunately, we can reduce the amount of memory we consume using a fairly straightforward optimization. Rather than requiring the entire search space a priori, we simply require the max topic size, in terms of words, e.g. has a size of 3. We can handle topics of the max size or less, e.g. stock.nyse.bac, stock.nasdaq.txn, forex.usd, index, etc. If we see a message with more words than the max, we can safely assume there are no matching subscriptions.

The optimized inverted bitmap works by splitting topics into their constituent parts. Each constituent position has a set of bitmaps, and we use a technique similar to the one described above on each part. We end up with a bitmap for each constituent which we perform a logical AND on to give a resulting bitmap. Each 1 in the resulting bitmap corresponds to a subscription. This means if the max topic size is n, we only AND at most n bitmaps. Furthermore, if we come across any empty bitmaps, we can stop early since we know there are no matching subscribers.

Let’s say our max topic size is 2 and we have the following subscriptions:

  • 0 = forex.*
  • 1 = stock.nyse
  • 2 = index
  • 3 = stock.*

The inverted bitmap for the first constituent looks like the following:

forex.* stock.nyse index stock.*
null 0 0 0 0
forex 1 0 0 0
stock 0 1 0 1
index 0 0 1 0
other 0 0 0 0

And the second constituent bitmap:

forex.* stock.nyse index stock.*
null 0 0 1 0
nyse 0 1 0 0
other 1 0 0 1

The “null” and “other” rows are worth pointing out. “Null” simply means the topic has no corresponding constituent.  For example, “index” has no second constituent, so “null” is marked. “Other” allows us to limit the number of rows needed such that we only need the ones that appear in subscriptions.  For example, if messages are published on forex.eur, forex.usd, and forex.gbp but I merely subscribe to forex.*, there’s no need to index eur, usd, or gbp. Instead, we just mark the “other” row which will match all of them.

Let’s look at an example using the above bitmaps. Imagine we want to route a message published on forex.eur. We split the topic into its constituents: “forex” and “eur.” We get the row corresponding to “forex” from the first constituent bitmap, the one corresponding to “eur” from the second (other), and then AND the rows.

forex.* stock.nyse index stock.*
1 = forex 1 0 0 0
2 = other 1 0 0 1
AND 1 0 0 0

The forex.* subscription matches.

Let’s try one more example: a message published on stock.nyse.

forex.* stock.nyse index stock.*
1 = stock 0 1 0 1
2 = nyse 0 1 0 1
AND 0 1 0 1

In this case, we also need to OR the “other” row for the second constituent. This gives us a match for stock.nyse and stock.*.

Subscribe operations are significantly faster with the space-optimized inverted bitmap compared to the normal inverted bitmap, but lookups are much slower. However, the optimized version consumes roughly 4.5x less memory for every subscription. The increased flexibility and improved scalability makes the optimized version a better choice for all but the very latency-sensitive use cases.

subscribe unsubscribe lookup
cold 1,053ns 330ns 2,724ns
hot 1,076ns 371ns 3,337ns


The optimized inverted bitmap improves space complexity, but it does so at the cost of lookup efficiency. Is there a way we can reconcile both time and space complexity? While inverted bitmaps allow for efficient lookups, they are quite wasteful for sparse sets, even when using highly compressed bitmaps like Roaring bitmaps.

Tries can often be more space efficient in these circumstances. When we add a subscription, we descend the trie, adding nodes along the way as necessary, until we run out of words in the topic. Finally, we add some metadata containing the subscription information to the last node in the chain. To match a message topic, we perform a similar traversal. If a node doesn’t exist in the chain, we know there are no subscribers. One downside of this method is, in order to support wildcards, we must backtrack on a literal match and check the “*” branch as well.

For the given set of subscriptions, the trie would look something like the following:

  • forex.*
  • stock.nyse
  • index
  • stock.*

You might be tempted to ask: “why do we even need the “*” nodes? When someone subscribes to stock.*, just follow all branches after “stock” and add the subscriber.” This would indeed move the backtracking cost from the read path to the write path, but—like the first inverted bitmap we looked at—it only works if the search space is known ahead of time. It would also largely negate the memory-usage benefits we’re looking for since it would require pre-indexing all topics while requiring a finite search space.

It turns out, this trie technique is how systems like ZeroMQ and RabbitMQ implement their topic matching due to its balance between space and time complexity and overall performance predictability.

subscribe unsubscribe lookup
cold 406ns 221ns 2,145ns
hot 443ns 257ns 2,278ns

We can see that, compared to the optimized inverted bitmap, the trie performs much more predictably with relation to the number of subscriptions held.

Concurrent Subscription Trie

One thing we haven’t paid much attention to so far is concurrency. Indeed, message-oriented middleware is typically highly concurrent since they have to deal with heavy IO (reading messages from the wire, writing messages to the wire, reading messages from disk, writing messages to disk, etc.) and CPU operations (like topic matching and routing). Subscribe, unsubscribe, and lookups are usually all happening in different threads of execution. This is especially important when we want to talk advantage of multi-core processors.

It wasn’t shown, but all of the preceding algorithms used global locks to ensure thread safety between read and write operations, making the data structures safe for concurrent use. However, the microbenchmarks don’t really show the impact of this, which we will see momentarily.

Lock-freedom, which I’ve written about, allows us to increase throughput at the expense of increased tail latency.

Lock-free concurrency means that while a particular thread of execution may be blocked, all CPUs are able to continue processing other work. For example, imagine a program that protects access to some resource using a mutex. If a thread acquires this mutex and is subsequently preempted, no other thread can proceed until this thread is rescheduled by the OS. If the scheduler is adversarial, it may never resume execution of the thread, and the program would be effectively deadlocked. A key point, however, is that the mere lack of a lock does not guarantee a program is lock-free. In this context, “lock” really refers to deadlock, livelock, or the misdeeds of a malevolent scheduler.

The concurrent subscription trie, or CS-trie,  is a new take on the trie-based solution described earlier. It combines the idea of the topic-matching trie with that of a Ctrie, or concurrent trie, which is a non-blocking concurrent hash trie.

The fundamental problem with the trie, as it relates to concurrency, is it requires a global lock, which severely limits throughput. To address this, the CS-trie uses indirection nodes, or I-nodes, which remain present in the trie even as the nodes above and below change. Subscriptions are then added or removed by creating a copy of the respective node, and performing a CAS on its parent I-node. This allows us to add, remove, and lookup subscriptions concurrently and in a lock-free, linearizable manner.

For the given set of subscribers, labeled x, y, and z, the CS-trie would look something like the following:

  • x = foo, bar, bar.baz
  • y = foo, bar.qux
  • z = bar.*

Lookups on the CS-trie perform, on average, better than the standard trie, and the CS-trie scales better with respect to concurrent operations.

subscribe unsubscribe lookup
cold 412ns 245ns 1,615ns
hot 471ns 280ns 1,637ns

Latency Comparison

The chart below shows the topic-matching operation latencies for all of the algorithms side-by-side. First, we look at the performance of a cold start (no subscriptions) and then the performance of a hot start (1,000 subscriptions).

Throughput Comparison

So far, we’ve looked at the latency of individual topic-matching operations. Next, we look at overall throughput of each of the algorithms and their memory footprint.

 algorithm msg/sec
naive  4,053.48
inverted bitmap  1,052,315.02
optimized inverted bitmap  130,705.98
trie  248,762.10
cs-trie  340,910.64

On the surface, the inverted bitmap looks like the clear winner, clocking in at over 1 million matches per second. However, we know the inverted bitmap does not scale and, indeed, this becomes clear when we look at memory consumption, underscored by the fact that the below chart uses a log scale.

Scalability with Respect to Concurrency

Lastly, we’ll look at how each of these algorithms scales with respect to concurrency. We do this by performing concurrent operations and varying the level of concurrency and number of operations. We start with a 50-50 split between reads and writes. We vary the number of goroutines from 2 to 16 (the benchmark was run using a 2.6 GHz Intel Core i7 processor with 8 logical cores). Each goroutine performs 1,000 reads or 1,000 writes. For example, the 2-goroutine benchmark performs 1,000 reads and 1,000 writes, the 4-goroutine benchmark performs 2,000 reads and 2,000 writes, etc. We then measure the total amount of time needed to complete the workload.

We can see that the tries hardly even register on the scale above, so we’ll plot them separately.

The tries are clearly much more efficient than the other solutions, but the CS-trie in particular scales well to the increased workload and concurrency.

Since most workloads are heavily biased towards reads over writes, we’ll run a separate benchmark that uses a 90-10 split reads and writes. This should hopefully provide a more realistic result.

The results look, more or less, like what we would expect, with the reduced writes improving the inverted bitmap performance. The CS-trie still scales quite well in comparison to the global-lock trie.


As we’ve seen, there are several approaches to consider to implement fast topic matching. There are also several aspects to look at: read/write access patterns, time complexity, space complexity, throughput, and latency.

The naive hashmap solution is generally a poor choice due to its prohibitively expensive lookup time. Inverted bitmaps offer a better solution. The standard implementation is reasonable if the search space is finite, small, and known a priori, especially if read latency is critical. The space-optimized version is a better choice for scalability, offering a good balance between read and write performance while keeping a small memory footprint. The trie is an even better choice, providing lower latency than the optimized inverted bitmap and consuming less memory. It’s particularly good if the subscription tree is sparse and topics are not known a priori. Lastly, the concurrent subscription trie is the best option if there is high concurrency and throughput matters. It offers similar performance to the trie but scales better. The only downside is an increase in implementation complexity.