Take It to the Limit: Considerations for Building Reliable Systems

Complex systems usually operate in failure mode. This is because a complex system typically consists of many discrete pieces, each of which can fail in isolation (or in concert). In a microservice architecture where a given function potentially comprises several independent service calls, high availability hinges on the ability to be partially available. This is a core tenet behind resilience engineering. If a function depends on three services, each with a reliability of 90%, 95%, and 99%, respectively, partial availability could be the difference between 99.995% reliability and 84% reliability (assuming failures are independent). Resilience engineering means designing with failure as the normal.

Anticipating failure is the first step to resilience zen, but the second is embracing it. Telling the client “no” and failing on purpose is better than failing in unpredictable or unexpected ways. Backpressure is another critical resilience engineering pattern. Fundamentally, it’s about enforcing limits. This comes in the form of queue lengths, bandwidth throttling, traffic shaping, message rate limits, max payload sizes, etc. Prescribing these restrictions makes the limits explicit when they would otherwise be implicit (eventually your server will exhaust its memory, but since the limit is implicit, it’s unclear exactly when or what the consequences might be). Relying on unbounded queues and other implicit limits is like someone saying they know when to stop drinking because they eventually pass out.

Rate limiting is important not just to prevent bad actors from DoSing your system, but also yourself. Queue limits and message size limits are especially interesting because they seem to confuse and frustrate developers who haven’t fully internalized the motivation behind them. But really, these are just another form of rate limiting or, more generally, backpressure. Let’s look at max message size as a case study.

Imagine we have a system of distributed actors. An actor can send messages to other actors who, in turn, process the messages and may choose to send messages themselves. Now, as any good software engineer knows, the eighth fallacy of distributed computing is “the network is homogenous.” This means not all actors are using the same hardware, software, or network configuration. We have servers with 128GB RAM running Ubuntu, laptops with 16GB RAM running macOS, mobile clients with 2GB RAM running Android, IoT edge devices with 512MB RAM, and everything in between, all running a hodgepodge of software and network interfaces.

When we choose not to put an upper bound on message sizes, we are making an implicit assumption (recall the discussion on implicit/explicit limits from earlier). Put another way, you and everyone you interact with (likely unknowingly) enters an unspoken contract of which neither party can opt out. This is because any actor may send a message of arbitrary size. This means any downstream consumers of this message, either directly or indirectly, must also support arbitrarily large messages.

How can we test something that is arbitrary? We can’t. We have two options: either we make the limit explicit or we keep this implicit, arbitrarily binding contract. The former allows us to define our operating boundaries and gives us something to test. The latter requires us to test at some undefined production-level scale. The second option is literally gambling reliability for convenience. The limit is still there, it’s just hidden. When we don’t make it explicit, we make it easy to DoS ourselves in production. Limits become even more important when dealing with cloud infrastructure due to their multitenant nature. They prevent a bad actor (or yourself) from bringing down services or dominating infrastructure and system resources.

In our heterogeneous actor system, we have messages bound for mobile devices and web browsers, which are often single-threaded or memory-constrained consumers. Without an explicit limit on message size, a client could easily doom itself by requesting too much data or simply receiving data outside of its control—this is why the contract is unspoken but binding.

Let’s look at this from a different kind of engineering perspective. Consider another type of system: the US National Highway System. The US Department of Transportation uses the Federal Bridge Gross Weight Formula as a means to prevent heavy vehicles from damaging roads and bridges. It’s really the same engineering problem, just a different discipline and a different type of infrastructure.

The August 2007 collapse of the Interstate 35W Mississippi River bridge in Minneapolis brought renewed attention to the issue of truck weights and their relation to bridge stress. In November 2008, the National Transportation Safety Board determined there had been several reasons for the bridge’s collapse, including (but not limited to): faulty gusset plates, inadequate inspections, and the extra weight of heavy construction equipment combined with the weight of rush hour traffic.

The DOT relies on weigh stations to ensure trucks comply with federal weight regulations, fining those that exceed restrictions without an overweight permit.

The federal maximum weight is set at 80,000 pounds. Trucks exceeding the federal weight limit can still operate on the country’s highways with an overweight permit, but such permits are only issued before the scheduled trip and expire at the end of the trip. Overweight permits are only issued for loads that cannot be broken down to smaller shipments that fall below the federal weight limit, and if there is no other alternative to moving the cargo by truck.

Weight limits need to be enforced so civil engineers have a defined operating range for the roads, bridges, and other infrastructure they build. Computers are no different. This is the reason many systems enforce these types of limits. For example, Amazon clearly publishes the limits for its Simple Queue Service—the max in-flight messages for standard queues is 120,000 messages and 20,000 messages for FIFO queues. Messages are limited to 256KB in size. Amazon KinesisApache KafkaNATS, and Google App Engine pull queues all limit messages to 1MB in size. These limits allow the system designers to optimize their infrastructure and ameliorate some of the risks of multitenancy—not to mention it makes capacity planning much easier.

Unbounded anything—whether its queues, message sizes, queries, or traffic—is a resilience engineering anti-pattern. Without explicit limits, things fail in unexpected and unpredictable ways. Remember, the limits exist, they’re just hidden. By making them explicit, we restrict the failure domain giving us more predictability, longer mean time between failures, and shorter mean time to recovery at the cost of more upfront work or slightly more complexity.

It’s better to be explicit and handle these limits upfront than to punt on the problem and allow systems to fail in unexpected ways. The latter might seem like less work at first but will lead to more problems long term. By requiring developers to deal with these limitations directly, they will think through their APIs and business logic more thoroughly and design better interactions with respect to stability, scalability, and performance.

Infrastructure Engineering in the 21st Century

Infrastructure engineering is an inherently treacherous problem space because it’s core to so many things. Systems today are increasingly distributed and increasingly complex but are built on unreliable components and will continue to be. This includes unreliable networks and faulty hardware. The 21st century engineer understands failure is routine.

Naturally, application developers would rather not have to think about low-level failure modes so they can focus on solving the problem at hand. Infrastructure engineers are then tasked with competing goals: provide enough abstraction to make application development tractable and provide enough reliability to make subsystems useful. The second goal often comes with an additional proviso in that there must be sufficient reliability without sacrificing performance to the point of no longer being useful. Anyone who has worked on enterprise messaging systems can tell you that these goals are often contradictory. The result is a wall of sand intended to keep the developer’s feet dry from the incoming tide. The 21st century engineer understands that in order to play in the sand, we all need to be comfortable getting our feet a little wet from time to time.

With the deluge of technology becoming available today, it’s tempting to introduce it all into your stack. Likewise, engineers are never happy. Left unchecked, we will hyper optimize and iterate into oblivion. It’s a problem I call “innovating to a fault.” Relying on “it’s done when it’s done” is a great way to ship vaporware. Have tangible objectives, make them high-level, and realize things change and evolve over time. Frame the concrete things you’re doing today within the context of those objectives. There’s a difference between Agile micromanagey roadmaps and having a clear vision. Determine when to innovate and when not to. Not Invented Here syndrome can be a deadly disease. Take inventory of what’s being built, make sure it ties back to your objectives, and avoid falling prey to tech pop culture. Optimize for the right problems. The 21st century engineer understands that you are not defined by your tools, you are defined by what you produce at the end of the day.

The prevalence of microservice architecture has made production tooling and instrumentation more important than ever. Teams should take ownership of their systems. If you’re not willing to stand by your work, don’t ship it. However, just because something falls outside of your system’s boundaries doesn’t mean it’s not your problem. If you rely on it, own it. Don’t be afraid to roll up your sleeves and dive into someone else’s code. The 21st century engineer understands that they live and die by the code they have in production, and if they don’t run anything in production, they aren’t really an engineer at all.

The way in which we design systems today is different from the way we designed them in the 20th century and the way we will design them in the future. There is a vast amount of research that has gone into computer science and related fields dating back to the invention of the modern computer. Research from the 50’s, 60’s, all the way up to today shows that system design always is an evolving process. Compiling this body of knowledge together provides an invaluable foundation from which we can build. The 21st century engineer understands that without a deeper understanding of that foundation or with a blind trust, we are only as good as our sand castle.

It’s our responsibility as software engineers, as system designers, as programmers to use this knowledge. Our job is not to build systems or write code, our job is to solve problems, of which code is often a byproduct. No one cares about the code you write, they care about the problems you solve. More specifically, they care about the business problems you solve. The 21st century engineer understands that if we’re not thinking about our solutions end to end, we’re not really doing our job.

Engage to Assuage

Abstraction is important. It’s how humans deal with complexity. You shouldn’t have to understand every little intricate detail behind how your system works. It would take years to do so. But abstraction comes at a cost. You agree to the abstraction’s interface, you place your trust in it, and then you remove it from your mind. That is, until it fails—and abstractions of sufficient complexity will fail. After all, we are building atop unreliable components. Also, a layer of abstraction doesn’t provide any guarantees in higher levels above it, which often results in some false assumptions.

We cannot understand how everything will work, but we should have enough understanding of how it will not work. More plainly, we should understand the cost of the abstractions we use so that we can pay for them with confidence. This doesn’t mean giving up on abstraction but engaging with the complexity that it manages.

I’ve written before about how distributed systems are a UX problem. They’re also a design problem. And a development problem. And an ops problem. And a business problem. The point is they are everyone’s problem because they are complex, and things that are sufficiently complex eventually leak. There is no airtight abstraction in this world. Without understanding limitations and trade-offs, without using the knowledge and research that has come before us, without thinking end to end, we set ourselves up for failure. If we’re going to call ourselves engineers, let’s start acting like it. Nothing is a black box to the 21st century engineer.

Designed to Fail

When it comes to reliability engineering, people often talk about things like fault injection, monitoring, and operations runbooks. These are all critical pieces for building systems which can withstand failure, but what’s less talked about is the need to design systems which deliberately fail.

Reliability design has a natural progression which closely follows that of architectural design. With monolithic systems, we care more about preventing failure from occurring. With service-oriented architectures, controlling failure becomes less manageable, so instead we learn to anticipate it. With highly distributed microservice architectures where failure is all but guaranteed, we embrace it.

What does it mean to embrace failure? Anticipating failure is understanding the behavior when things go wrong, building systems to be resilient to it, and having a game plan for when it happens, either manual or automated. Embracing failure means making a conscious decision to purposely fail, and it’s essential for building highly available large-scale systems.

A microservice architecture typically means a complex web of service dependencies. One of SOA’s goals is to isolate failure and allow for graceful degradation. The key to being highly available is learning to be partially available. Frequently, one of the requirements for partial availability is telling the client “no.” Outright rejecting service requests is often better than allowing them to back up because, when dealing with distributed services, the latter usually results in cascading failure across dependent systems.

While designing our distributed messaging service at Workiva, we made explicit decisions to drop messages on the floor if we detect the system is becoming overloaded. As queues become backed up, incoming messages are discarded, a statsd counter is incremented, and a backpressure notification is sent to the client. Upon receiving this notification, the client can respond accordingly by failing fast, exponentially backing off, or using some other flow-control strategy. By bounding resource utilization, we maintain predictable performance, predictable (and measurable) lossiness, and impede cascading failure.

Other techniques include building kill switches into service calls and routers. If an overloaded service is not essential to core business, we fail fast on calls to it to prevent availability or latency problems upstream. For example, a spam-detection service is not essential to an email system, so if it’s unavailable or overwhelmed, we can simply bypass it. Netflix’s Hystrix has a set of really nice patterns for handling this.

If we’re not careful, we can often be our own worst enemy. Many times, it’s our own internal services which cause the biggest DoS attacks on ourselves. By isolating and controlling it, we can prevent failure from becoming widespread and unpredictable. By building in backpressure mechanisms and other types of intentional “failure” modes, we can ensure better availability and reliability for our systems through graceful degradation. Sometimes it’s better to fight fire with fire and failure with failure.

Distributed Systems Are a UX Problem

Distributed systems are not strictly an engineering problem. It’s far too easy to assume a “backend” development concern, but the reality is there are implications at every point in the stack. Often the trade-offs we make lower in the stack in order to buy responsiveness bubble up to the top—so much, in fact, that it rarely doesn’t impact the application in some way. Distributed systems affect the user. We need to shift the focus from system properties and guarantees to business rules and application behavior. We need to understand the limitations and trade-offs at each level in the stack and why they exist. We need to assume failure and plan for recovery. We need to start thinking of distributed systems as a UX problem.

The Truth is Prohibitively Expensive

Stop relying on strong consistency. Coordination and distributed transactions are slow and inhibit availability. The cost of knowing the “truth” is prohibitively expensive for many applications. For that matter, what you think is the truth is likely just a partial or outdated version of it.

Instead, choose availability over consistency by making local decisions with the knowledge at hand and design the UX accordingly. By making this trade-off, we can dramatically improve the user’s experience—most of the time.

Failure Is an Option

There are a lot of problems with simultaneity in distributed computing. As Justin Sheehy describes it, there is no “now” when it comes to distributed systems—that article, by the way, is a must-read for every engineer, regardless of where they work in the stack.

While some things about computers are “virtual,” they still must operate in the physical world and cannot ignore the challenges of that world.

Even though computers operate in the real world, they are disconnected from it. Imagine an inventory system. It may place orders to its artificial heart’s desire, but if the warehouse burns down, there’s no fulfilling them. Even if the system is perfect, its state may be impossible. But the system is typically not perfect because the truth is prohibitively expensive. And not only do warehouses catch fire or forklifts break down, as rare as this may be, but computers fail and networks partition—and that’s far less rare.

The point is, stop trying to build perfect systems because one of two things will happen:

1. You have a false sense of security because you think the system is perfect, and it’s not.

or

2. You will never ship because perfection is out of reach or exorbitantly expensive.

Either case can be catastrophic, depending on the situation. With systems, failure is not only an option, it’s an inevitability, so let’s plan for it as such. We have a lot to gain by embracing failure. Eric Brewer articulated this idea in a recent interview:

So the general answer is you allow things to be inconsistent and then you find ways to compensate for mistakes, versus trying to prevent mistakes altogether. In fact, the financial system is actually not based on consistency, it’s based on auditing and compensation. They didn’t know anything about the CAP theorem, that was just the decision they made in figuring out what they wanted, and that’s actually, I think, the right decision.

We can look to ATMs, and banks in general, as the canonical example for how this works. When you withdraw money, the bank could choose to first coordinate your account, calculating your available balance at that moment in time, before issuing the withdrawal. But what happens when the ATM is temporarily disconnected from the bank? The bank loses out on revenue.

Instead, they make a calculated risk. They choose availability and compensate the risk of overdraft with interest and charges. Likewise, banks use double-entry bookkeeping to provide an audit trail. Every credit has a corresponding debit. Mistakes happen—accounts are debited twice, an account is credited without another being debited—the failure modes are virtually endless. But we audit and compensate, detect and recover. Banks are loosely coupled systems. Accountants don’t use erasers. Why should programmers?

When you find yourself saying “this is important data or people’s money, it has to be correct,” consider how the problem was solved before computers. Building on Quicksand by Dave Campbell and Pat Helland is a great read on this topic:

Whenever the authors struggle with explaining how to implement loosely-coupled solutions, we look to how things were done before computers. In almost every case, we can find inspiration in paper forms, pneumatic tubes, and forms filed in triplicate.

Consider the lost request and its idempotent execution. In the past, a form would have multiple carbon copies with a printed serial number on top of them. When a purchase-order request was submitted, a copy was kept in the file of the submitter and placed in a folder with the expected date of the response. If the form and its work were not completed by the expected date, the submitter would initiate an inquiry and ask to locate the purchase-order form in question. Even if the work was lost, the purchase-order would be resubmitted without modification to ensure a lack of confusion in the processing of the work. You wouldn’t change the number of items being ordered as that may cause confusion. The unique serial number on the top would act as a mechanism to ensure the work was not performed twice.

Computers allow us to greatly improve the user experience, but many of the same fail-safes still exist, just slightly rethought.

The idea of compensation is actually a common theme within distributed systems. The Saga pattern is a great example of this. Large-scale systems often have to coordinate resources across disparate services.  Traditionally, we might solve this problem using distributed transactions like two-phase commit. The problem with this approach is it doesn’t scale very well, it’s slow, and it’s not particularly fault tolerant. With 2PC, we have deadlock problems and even 3PC is still susceptible to network partitions.

Sagas split a long-lived transaction into individual, interleaved sub-transactions. Each sub-transaction in the sequence has a corresponding compensating transaction which reverses its effects. The compensating transactions must be idempotent so they can be safely retried. In the event of a partial execution, the compensating transactions are run and the Saga is effectively rolled back.

The commonly used example for Sagas is booking a trip. We need to ensure flight, car rental, and hotel are all booked or none are booked. If booking the flight fails, we cancel the hotel and car, etc. Sagas trade off atomicity for availability while still allowing us to manage failure, a common occurrence in distributed systems.

Compensation has a lot of applications as a UX principle because it’s really the only way to build loosely coupled, highly available services.

Calculated Recovery

Pat Helland describes computing as nothing more than “memories, guesses, and apologies.” Computers always have partial knowledge. Either there is a disconnect with the real world (warehouse is on fire) or there is a disconnect between systems (System A sold a Foo Widget but, unbeknownst to it, System B just sold the last one in inventory—oops!). Systems don’t make decisions, they make guesses. The guess might be good or it might be bad, but rarely is there certainty. We can wait to collect as much information as possible before making a guess, but it means progress can’t be made until the system is confident enough to do so.

Computers have memory. This means they remember facts they have learned and guesses they have made. Memories help systems make better guesses in the future, and they can share those memories with other systems to help in their guesses. We can store more memories at the cost of more money, and we can survey other systems’ memories at the cost of more latency.

It is a business decision how much money, latency, and energy should be spent on reducing forgetfulness. To make this decision, the costs of the increased probability of remembering should be weighed against the costs of occasionally forgetting stuff.

Generally speaking, the more forgetfulness we can tolerate, the more responsive our systems will be, provided we know how to handle the situations where something is forgotten.

Sooner or later, a system guesses wrong. It sucks. It might mean we lose out on revenue; the business isn’t happy. It might mean the user loses out on what they want; the customer isn’t happy. But we calculate the impact of these wrong guesses, we determine when the trade-offs do and don’t make sense, we compensate, and—when shit hits the fan—we apologize.

Business realities force apologies.  To cope with these difficult realities, we need code and, frequently, we need human beings to apologize. It is essential that businesses have both code and people to manage these apologies.

Distributed systems are as much about failure modes and recovery as they are about being operationally correct. It’s critical that we can recover gracefully when something goes wrong, and often that affects the UX.

We could choose to spend extraordinary amounts of money and countless man-hours laboring over a system which provides the reliability we want. We could construct a data center. We could deploy big, expensive machines. We could install redundant fiber and switches. We could drudge over infallible code. Or we could stop, think for a moment, and realize maybe “sorry” is a more effective alternative. Knowing when to make that distinction can be the difference between a successful business and a failed one. The implications of distributed systems may be wider reaching than you thought.

Sometimes Kill -9 Isn’t Enough

If there’s one thing to know about distributed systems, it’s that they have to be designed with the expectation of failure. It’s also safe to say that most software these days is, in some form, distributed—whether it’s a database, mobile app, or enterprise SaaS. If you have two different processes talking to each other, you have a distributed system, and it doesn’t matter if those processes are local or intergalactically displaced.

Marc Hedlund recently had a great post on Stripe’s game-day exercises where they block off an afternoon, take a blunt instrument to their servers, and see what happens. We’re talking like abruptly killing instances here—kill -9, ec2-terminate-instances, yanking on the damn power cord—that sort of thing. Everyone should be doing this type of stuff. You really don’t know how your system behaves until you see it under failure conditions.

Netflix uses Chaos Monkey to randomly terminate instances, and they do it in production. That takes some balls, but you know you have a pretty solid system when you’re comfortable killing live production servers. At Workiva, we have a middleware we use to inject datastore and other RPC errors into Google App Engine. Building resilient systems is an objective concern, but we still have a ways to go.

We need to be pessimists and design for failure, but injecting failure isn’t enough. Sure, every so often shit hits the proverbial fan, and we need to be tolerant of that. But more often than not, that fan is just a strong headwind.

Simulating failure is a necessary element for building reliable distributed systems, but system behavior isn’t black and white, it’s a continuum. We build our system in a vacuum and (hopefully) test it under failure, but we should also be observing it in this gray area. How does it perform with unreliable network connections? Low bandwidth? High latency? Dropped packets? Out-of-order packets? Duplicate packets? Not only do our systems need to be fault-tolerant, they need to be pressure-tolerant.

Simulating Pressure

There are a lot of options to do these types of “pressure” simulations. On Linux, we can use iptables to accomplish this.

This will drop incoming and outgoing packets with a 10% probability. Alternatively, we can use tc to simulate network latency, limited bandwidth, and packet loss.

The above adds an additional 250ms of latency with 10% packet loss and a bandwidth limit of 1Mbps. Likewise, on OSX and BSD we can use ipfw or pfctl.

Here we inject 500ms of latency while limiting bandwidth to 1Mbps and dropping 10% of packets.

These are just some very simple traffic-shaping examples. Several of these tools allow you to perform even more advanced testing, like adding variation and correlation values. This would allow you to emulate burst packet loss and other situations we often encounter. For instance, with tc, we can add jitter to the network latency.

This adds 50±20ms of latency. Since network latency typically isn’t uniform, we can apply a normal distribution to achieve a more realistic simulation.

Now we get a nice bell curve which is probably more representative of what we see in practice. We can also use tc to re-order, duplicate, and corrupt packets.

I’ve been working on an open-source tool which attempts to wrap these controls up so you don’t have to memorize the options or worry about portability. It’s pretty primitive and doesn’t support much yet, but it provides a thin layer of abstraction.

Conclusion

Injecting failure is crucial to understanding systems and building confidence, but like good test coverage, it’s important to examine suboptimal-but-operating scenarios. This isn’t even 99th-percentile stuff—this is the type of shit your users deal with every single day. If you can’t handle sustained latency and sporadic network partitions, who cares if you tolerate instance failure? The tools are at our disposal, they just need to be leveraged.

From Mainframe to Microservice: An Introduction to Distributed Systems

I gave a talk at Iowa Code Camp this weekend on distributed systems. It was primarily an introduction to them, so it explored some core concepts at a high level.  We looked at why distributed systems are difficult to build (right), the CAP theorem, consensus, scaling shared data and CRDTs.

There was some interest in making the slides available online. I’m not sure how useful they are without narration, but here they are anyway for posterity.