Abstraction Considered Harmful

“Abstraction is sometimes harmful,” he proclaims to the sound of anxious whooping and subdued applause from the audience. Peter Alvaro’s 2015 Strange Loop keynote, I See What You Mean, remains one of my favorite talks—not just because of its keen insight on distributed computing and language design, but because of a more fundamental, almost primordial, understanding of systems thinking.

Abstraction is what we use to manage complexity. We build something of significant complexity, we mask its inner workings, and we expose what we think is necessary for interacting with it.

Programmers are lazy, and abstractions help us be lazy. The builders of abstractions need not think about how their abstractions will be used—this would be far too much effort. Likewise, the users of abstractions need not think about how their abstractions work—this would be far too much effort. And now we have a nice, neatly wrapped package we can use and reuse to build all kinds of applications—after all, duplicating it would be far too much effort and goes against everything we consider sacred as programmers.

It usually works like this: in order to solve a problem, a programmer first needs to solve a sub-problem. This sub-problem is significant enough in complexity or occurs frequently enough in practice that the programmer doesn’t want to solve it for the specific case—an abstraction is born. Now, this can go one of two ways. Either the abstraction is rock solid and the programmer never has to think about the mundane details again (think writing loops instead of writing a bunch of jmp statements)—success—or the abstraction is leaky because the underlying problem is sufficiently complex (think distributed database transactions). Infinite sadness.

It’s kind of a cruel irony. The programmer complains that there’s not enough abstraction for a hard sub-problem. Indeed, the programmer doesn’t care about solving the sub-problem. They are focused on solving the greater problem at hand. So, as any good programmer would do, we build an abstraction for the hard sub-problem, mask its inner workings, and expose what we think is necessary for interacting with it. But then we discover that the abstraction leaks and complain that it isn’t perfect. It turns out, hard problems are hard. The programmer then simply does away with the abstraction and solves the sub-problem for their specific case, handling the complexity in a way that makes sense for their application.

Abstraction doesn’t magically make things less hard. It just attempts to hide that fact from you. Just because the semantics are simple doesn’t mean the solution is. In fact, it’s often the opposite, yet this seems to be a frequently implied assumption.

Duplication is far cheaper than the wrong abstraction. Just deciding which little details we need to expose on our abstractions can be difficult, particularly when we don’t know how they will be used. The truth is, we can’t know how they will be used because some of the uses haven’t even been conceived yet. Abstraction is a delicate balance of precision and granularity. To quote Dijkstra:

The purpose of abstracting is not to be vague, but to create a new semantic level in which one can be absolutely precise.

But, as we know, requirements are fluid. Too precise and we lose granularity, hindering our ability to adapt in the future. Too granular and we weaken the abstraction. But a strong abstraction for a hard problem isn’t really strong at all when it leaks.

The key takeaway is that abstractions leak, and we have to deal with that. There is never a silver bullet for problems of sufficient complexity. Peter ends his talk on a polemic against the way we currently view abstraction:

[Let’s] not make concrete, static abstractions. Trust ourselves to let ourselves peer below the facade. There’s a lot of complexity down there, but we need to engage with that complexity. We need tools that help us engage with the complexity, not a fire blanket. Abstractions are going to leak, so make the abstractions fluid.

Abstraction, in and of itself, is not harmful. On the contrary, it’s necessary for progress. What’s harmful is relying on impenetrable barriers to protect our precious programmers from hard problems. After all, the 21st century engineer understands that in order to play in the sand, we all need to be comfortable getting our feet a little wet from time to time.

Infrastructure Engineering in the 21st Century

Infrastructure engineering is an inherently treacherous problem space because it’s core to so many things. Systems today are increasingly distributed and increasingly complex but are built on unreliable components and will continue to be. This includes unreliable networks and faulty hardware. The 21st century engineer understands failure is routine.

Naturally, application developers would rather not have to think about low-level failure modes so they can focus on solving the problem at hand. Infrastructure engineers are then tasked with competing goals: provide enough abstraction to make application development tractable and provide enough reliability to make subsystems useful. The second goal often comes with an additional proviso in that there must be sufficient reliability without sacrificing performance to the point of no longer being useful. Anyone who has worked on enterprise messaging systems can tell you that these goals are often contradictory. The result is a wall of sand intended to keep the developer’s feet dry from the incoming tide. The 21st century engineer understands that in order to play in the sand, we all need to be comfortable getting our feet a little wet from time to time.

With the deluge of technology becoming available today, it’s tempting to introduce it all into your stack. Likewise, engineers are never happy. Left unchecked, we will hyper optimize and iterate into oblivion. It’s a problem I call “innovating to a fault.” Relying on “it’s done when it’s done” is a great way to ship vaporware. Have tangible objectives, make them high-level, and realize things change and evolve over time. Frame the concrete things you’re doing today within the context of those objectives. There’s a difference between Agile micromanagey roadmaps and having a clear vision. Determine when to innovate and when not to. Not Invented Here syndrome can be a deadly disease. Take inventory of what’s being built, make sure it ties back to your objectives, and avoid falling prey to tech pop culture. Optimize for the right problems. The 21st century engineer understands that you are not defined by your tools, you are defined by what you produce at the end of the day.

The prevalence of microservice architecture has made production tooling and instrumentation more important than ever. Teams should take ownership of their systems. If you’re not willing to stand by your work, don’t ship it. However, just because something falls outside of your system’s boundaries doesn’t mean it’s not your problem. If you rely on it, own it. Don’t be afraid to roll up your sleeves and dive into someone else’s code. The 21st century engineer understands that they live and die by the code they have in production, and if they don’t run anything in production, they aren’t really an engineer at all.

The way in which we design systems today is different from the way we designed them in the 20th century and the way we will design them in the future. There is a vast amount of research that has gone into computer science and related fields dating back to the invention of the modern computer. Research from the 50’s, 60’s, all the way up to today shows that system design always is an evolving process. Compiling this body of knowledge together provides an invaluable foundation from which we can build. The 21st century engineer understands that without a deeper understanding of that foundation or with a blind trust, we are only as good as our sand castle.

It’s our responsibility as software engineers, as system designers, as programmers to use this knowledge. Our job is not to build systems or write code, our job is to solve problems, of which code is often a byproduct. No one cares about the code you write, they care about the problems you solve. More specifically, they care about the business problems you solve. The 21st century engineer understands that if we’re not thinking about our solutions end to end, we’re not really doing our job.

Engage to Assuage

Abstraction is important. It’s how humans deal with complexity. You shouldn’t have to understand every little intricate detail behind how your system works. It would take years to do so. But abstraction comes at a cost. You agree to the abstraction’s interface, you place your trust in it, and then you remove it from your mind. That is, until it fails—and abstractions of sufficient complexity will fail. After all, we are building atop unreliable components. Also, a layer of abstraction doesn’t provide any guarantees in higher levels above it, which often results in some false assumptions.

We cannot understand how everything will work, but we should have enough understanding of how it will not work. More plainly, we should understand the cost of the abstractions we use so that we can pay for them with confidence. This doesn’t mean giving up on abstraction but engaging with the complexity that it manages.

I’ve written before about how distributed systems are a UX problem. They’re also a design problem. And a development problem. And an ops problem. And a business problem. The point is they are everyone’s problem because they are complex, and things that are sufficiently complex eventually leak. There is no airtight abstraction in this world. Without understanding limitations and trade-offs, without using the knowledge and research that has come before us, without thinking end to end, we set ourselves up for failure. If we’re going to call ourselves engineers, let’s start acting like it. Nothing is a black box to the 21st century engineer.