From the Ground Up: Reasoning About Distributed Systems in the Real World

The rabbit hole is deep. Down and down it goes. Where it ends, nobody knows. But as we traverse it, patterns appear. They give us hope, they quell the fear.

Distributed systems literature is abundant, but as a practitioner, I often find it difficult to know where to start or how to synthesize this knowledge without a more formal background. This is a non-academic’s attempt to provide a line of thought for rationalizing design decisions. This piece doesn’t necessarily contribute any new ideas but rather tries to provide a holistic framework by studying some influential existing ones. It includes references which provide a good starting point for thinking about distributed systems. Specifically, we look at a few formal results and slightly less formal design principles to provide a basis from which we can argue about system design.

This is your last chance. After this, there is no turning back. I wish I could say there is no red-pill/blue-pill scenario at play here, but the world of distributed systems is complex. In order to make sense of it, we reason from the ground up while simultaneously stumbling down the deep and cavernous rabbit hole.

Guiding Principles

In order to reason about distributed system design, it’s important to lay out some guiding principles or theorems used to establish an argument. Perhaps the most fundamental of which is the Two Generals Problem originally introduced by Akkoyunlu et al. in Some Constraints and Trade-offs in the Design of Network Communications and popularized by Jim Gray in Notes on Data Base Operating Systems in 1975 and 1978, respectively. The Two Generals Problem demonstrates that it’s impossible for two processes to agree on a decision over an unreliable network. It’s closely related to the binary consensus problem (“attack” or “don’t attack”) where the following conditions must hold:

  • Termination: all correct processes decide some value (liveness property).
  • Validity: if all correct processes decide v, then v must have been proposed by some correct process (non-triviality property).
  • Integrity: all correct processes decide at most one value v, and is the “right” value (safety property).
  • Agreement: all correct processes must agree on the same value (safety property).

It becomes quickly apparent that any useful distributed algorithm consists of some intersection of both liveness and safety properties. The problem becomes more complicated when we consider an asynchronous network with crash failures:

  • Asynchronous: messages may be delayed arbitrarily long but will eventually be delivered.
  • Crash failure: processes can halt indefinitely.

Considering this environment actually leads us to what is arguably one of the most important results in distributed systems theory: the FLP impossibility result introduced by Fischer, Lynch, and Patterson in their 1985 paper Impossibility of Distributed Consensus with One Faulty Process. This result shows that the Two Generals Problem is provably impossible. When we do not consider an upper bound on the time a process takes to complete its work and respond in a crash-failure model, it’s impossible to make the distinction between a process that is crashed and one that is taking a long time to respond. FLP shows there is no algorithm which deterministically solves the consensus problem in an asynchronous environment when it’s possible for at least one process to crash. Equivalently, we say it’s impossible to have a perfect failure detector in an asynchronous system with crash failures.

When talking about fault-tolerant systems, it’s also important to consider Byzantine faults, which are essentially arbitrary faults. These include, but are not limited to, attacks which might try to subvert the system. For example, a security attack might try to generate or falsify messages. The Byzantine Generals Problem is a generalized version of the Two Generals Problem which describes this fault model. Byzantine fault tolerance attempts to protect against these threats by detecting or masking a bounded number of Byzantine faults.

Why do we care about consensus? The reason is it’s central to so many important problems in system design. Leader election implements consensus allowing you to dynamically promote a coordinator to avoid single points of failure. Distributed databases implement consensus to ensure data consistency across nodes. Message queues implement consensus to provide transactional or ordered delivery. Distributed init systems implement consensus to coordinate processes. Consensus is fundamentally an important problem in distributed programming.

It has been shown time and time again that networks, whether local-area or wide-area, are often unreliable and largely asynchronous. As a result, these proofs impose real and significant challenges to system design.

The implications of these results are not simply academic: these impossibility results have motivated a proliferation of systems and designs offering a range of alternative guarantees in the event of network failures.

L. Peter Deutsch’s fallacies of distributed computing are a key jumping-off point in the theory of distributed systems. It presents a set of incorrect assumptions which many new to the space frequently make, of which the first is “the network is reliable.”

  1. The network is reliable.
  2. Latency is zero.
  3. Bandwidth is infinite.
  4. The network is secure.
  5. Topology doesn’t change.
  6. There is one administrator.
  7. Transport cost is zero.
  8. The network is homogeneous.

The CAP theorem, while recently the subject of scrutiny and debate over whether it’s overstated or not, is a useful tool for establishing fundamental trade-offs in distributed systems and detecting vendor sleight of hand. Gilbert and Lynch’s Perspectives on the CAP Theorem lays out the intrinsic trade-off between safety and liveness in a fault-prone system, while Fox and Brewer’s Harvest, Yield, and Scalable Tolerant Systems characterizes it in a more pragmatic light. I will continue to say unequivocally that the CAP theorem is important within the field of distributed systems and of significance to system designers and practitioners.

A Renewed Hope

Following from the results detailed earlier would imply many distributed algorithms, including those which implement linearizable operations, serializable transactions, and leader election, are a hopeless endeavor. Is it game over? Fortunately, no. Carefully designed distributed systems can maintain correctness without relying on pure coincidence.

First, it’s important to point out that the FLP result does not indicate consensus is unreachable, just that it’s not always reachable in bounded time. Second, the system model FLP uses is, in some ways, a pathological one. Synchronous systems place a known upper bound on message delivery between processes and on process computation. Asynchronous systems have no fixed upper bounds. In practice, systems tend to exhibit partial synchrony, which is described as one of two models by Dwork and Lynch in Consensus in the Presence of Partial Synchrony. In the first model of partial synchrony, fixed bounds exist but they are not known a priori. In the second model, the bounds are known but are only guaranteed to hold starting at unknown time T. Dwork and Lynch present fault-tolerant consensus protocols for both partial-synchrony models combined with various fault models.

Chandra and Toueg introduce the concept of unreliable failure detectors in Unreliable Failure Detectors for Reliable Distributed Systems. Each process has a local, external failure detector which can make mistakes. The detector monitors a subset of the processes in the system and maintains a list of those it suspects to have crashed. Failures are detected by simply pinging each process periodically and suspecting any process which doesn’t respond to the ping within twice the maximum round-trip time for any previous ping. The detector makes a mistake when it erroneously suspects a correct process, but it may later correct the mistake by removing the process from its list of suspects. The presence of failure detectors, even unreliable ones, makes consensus solvable in a slightly relaxed system model.

While consensus ensures processes agree on a value, atomic broadcast ensures processes deliver the same messages in the same order. This same paper shows that the problems of consensus and atomic broadcast are reducible to each other, meaning they are equivalent. Thus, the FLP result and others apply equally to atomic broadcast, which is used in coordination services like Apache ZooKeeper.

In Introduction to Reliable and Secure Distributed Programming, Cachin, Guerraoui, and Rodrigues suggest most practical systems can be described as partially synchronous:

Generally, distributed systems appear to be synchronous. More precisely, for most systems that we know of, it is relatively easy to define physical time bounds that are respected most of the time. There are, however, periods where the timing assumptions do not hold, i.e., periods during which the system is asynchronous. These are periods where the network is overloaded, for instance, or some process has a shortage of memory that slows it down. Typically, the buffer that a process uses to store incoming and outgoing messages may overflow, and messages may thus get lost, violating the time bound on the delivery. The retransmission of the messages may help ensure the reliability of the communication links but introduce unpredictable delays. In this sense, practical systems are partially synchronous.

We capture partial synchrony by assuming timing assumptions only hold eventually without stating exactly when. Similarly, we call the system eventually synchronous. However, this does not guarantee the system is synchronous forever after a certain time, nor does it require the system to be initially asynchronous then after a period of time become synchronous. Instead it implies the system has periods of asynchrony which are not bounded, but there are periods where the system is synchronous long enough for an algorithm to do something useful or terminate. The key thing to remember with asynchronous systems is that they contain no timing assumptions.

Lastly, On the Minimal Synchronism Needed for Distributed Consensus by Dolev, Dwork, and Stockmeyer describes a consensus protocol as t-resilient if it operates correctly when at most t processes fail. In the paper, several critical system parameters and synchronicity conditions are identified, and it’s shown how varying them affects the t-resiliency of an algorithm. Consensus is shown to be provably possible for some models and impossible for others.

Fault-tolerant consensus is made possible by relying on quorums. The intuition is that as long as a majority of processes agree on every decision, there is at least one process which knows about the complete history in the presence of faults.

Deterministic consensus, and by extension a number of other useful algorithms, is impossible in certain system models, but we can model most real-world systems in a way that circumvents this. Nevertheless, it shows the inherent complexities involved with distributed systems and the rigor needed to solve certain problems.

Theory to Practice

What does all of this mean for us in practice? For starters, it means distributed systems are usually a harder problem than they let on. Unfortunately, this is often the cause of improperly documented trade-offs or, in many cases, data loss and safety violations. It also suggests we need to rethink the way we design systems by shifting the focus from system properties and guarantees to business rules and application invariants.

One of my favorite papers is End-To-End Arguments in System Design by Saltzer, Reed, and Clark. It’s an easy read, but it presents a compelling design principle for determining where to place functionality in a distributed system. The principle idea behind the end-to-end argument is that functions placed at a low level in a system may be redundant or of little value when compared to the cost of providing them at that low level. It follows that, in many situations, it makes more sense to flip guarantees “inside out”—pushing them outwards rather than relying on subsystems, middleware, or low-level layers of the stack to maintain them.

To illustrate this, we consider the problem of “careful file transfer.” A file is stored by a file system on the disk of computer A, which is linked by a communication network to computer B. The goal is to move the file from computer A’s storage to computer B’s storage without damage and in the face of various failures along the way. The application in this case is the file-transfer program which relies on storage and network abstractions. We can enumerate just a few of the potential problems an application designer might be concerned with:

  1. The file, though originally written correctly onto the disk at host A, if read now may contain incorrect data, perhaps because of hardware faults in the disk storage system.
  2. The software of the file system, the file transfer program, or the data communication system might make a mistake in buffering and copying the data of the file, either at host A or host B.
  3. The hardware processor or its local memory might have a transient error while doing the buffering and copying, either at host A or host B.
  4. The communication system might drop or change the bits in a packet, or lose a packet or deliver a packet more than once.
  5. Either of the hosts may crash part way through the transaction after performing an unknown amount (perhaps all) of the transaction.

Many of these problems are Byzantine in nature. When we consider each threat one by one, it becomes abundantly clear that even if we place countermeasures in the low-level subsystems, there will still be checks required in the high-level application. For example, we might place checksums, retries, and sequencing of packets in the communication system to provide reliable data transmission, but this really only eliminates threat four. An end-to-end checksum and retry mechanism at the file-transfer level is needed to guard against the remaining threats.

Building reliability into the low level has a number of costs involved. It takes a non-trivial amount of effort to build it. It’s redundant and, in fact, hinders performance by reducing the frequency of application retries and adding unneeded overhead. It also has no actual effect on correctness because correctness is determined and enforced by the end-to-end checksum and retries. The reliability and correctness of the communication system is of little importance, so going out of its way to ensure resiliency does not reduce any burden on the application. In fact, ensuring correctness by relying on the low level might be altogether impossible since threat number two requires writing correct programs, but not all programs involved may be written by the file-transfer application programmer.

Fundamentally, there are two problems with placing functionality at the lower level. First, the lower level is not aware of the application needs or semantics, which means logic placed there is often insufficient. This leads to duplication of logic as seen in the example earlier. Second, other applications which rely on the lower level pay the cost of the added functionality even when they don’t necessarily need it.

Saltzer, Reed, and Clark propose the end-to-end principle as a sort of “Occam’s razor” for system design, arguing that it helps guide the placement of functionality and organization of layers in a system.

Because the communication subsystem is frequently specified before applications that use the subsystem are known, the designer may be tempted to “help” the users by taking on more function than necessary. Awareness of end-to end arguments can help to reduce such temptations.

However, it’s important to note that the end-to-end principle is not a panacea. Rather, it’s a guideline to help get designers to think about their solutions end to end, acknowledge their application requirements, and consider their failure modes. Ultimately, it provides a rationale for moving function upward in a layered system, closer to the application that uses the function, but there are always exceptions to the rule. Low-level mechanisms might be built as a performance optimization. Regardless, the end-to-end argument contends that lower levels should avoid taking on any more responsibility than necessary. The “lessons” section from Google’s Bigtable paper echoes some of these same sentiments:

Another lesson we learned is that it is important to delay adding new features until it is clear how the new features will be used. For example, we initially planned to support general-purpose transactions in our API. Because we did not have an immediate use for them, however, we did not implement them. Now that we have many real applications running on Bigtable, we have been able to examine their actual needs, and have discovered that most applications require only single-row transactions. Where people have requested distributed transactions, the most important use is for maintaining secondary indices, and we plan to add a specialized mechanism to satisfy this need. The new mechanism will be less general than distributed transactions, but will be more efficient (especially for updates that span hundreds of rows or more) and will also interact better with our scheme for optimistic cross-datacenter replication.

We’ll see the end-to-end argument as a common theme throughout the remainder of this piece.

Whose Guarantee Is It Anyway?

Generally, we rely on robust algorithms, transaction managers, and coordination services to maintain consistency and application correctness. The problem with these is twofold: they are often unreliable and they impose a massive performance bottleneck.

Distributed coordination algorithms are difficult to get right. Even tried-and-true protocols like two-phase commit are susceptible to crash failures and network partitions. Protocols which are more fault tolerant like Paxos and Raft generally don’t scale well beyond small clusters or across wide-area networks. Consensus systems like ZooKeeper own your availability, meaning if you depend on one and it goes down, you’re up a creek. Since quorums are often kept small for performance reasons, this might be less rare than you think.

Coordination systems become a fragile and complex piece of your infrastructure, which seems ironic considering they are usually employed to reduce fragility. On the other hand, message-oriented middleware largely use coordination to provide developers with strong guarantees: exactly-once, ordered, transactional delivery and the like.

From transmission protocols to enterprise message brokers, relying on delivery guarantees is an anti-pattern in distributed system design. Delivery semantics are a tricky business. As such, when it comes to distributed messaging, what you want is often not what you need. It’s important to look at the trade-offs involved, how they impact system design (and UX!), and how we can cope with them to make better decisions.

Subtle and not-so-subtle failure modes make providing strong guarantees exceedingly difficult. In fact, some guarantees, like exactly-once delivery, aren’t even really possible to achieve when we consider things like the Two Generals Problem and the FLP result. When we try to provide semantics like guaranteed, exactly-once, and ordered message delivery, we usually end up with something that’s over-engineered, difficult to deploy and operate, fragile, and slow. What is the upside to all of this? Something that makes your life easier as a developer when things go perfectly well, but the reality is things don’t go perfectly well most of the time. Instead, you end up getting paged at 1 a.m. trying to figure out why RabbitMQ told your monitoring everything is awesome while proceeding to take a dump in your front yard.

If you have something that relies on these types of guarantees in production, know that this will happen to you at least once sooner or later (and probably much more than that). Eventually, a guarantee is going to break down. It might be inconsequential, it might not. Not only is this a precarious way to go about designing things, but if you operate at a large scale, care about throughput, or have sensitive SLAs, it’s probably a nonstarter.

The performance implications of distributed transactions are obvious. Coordination is expensive because processes can’t make progress independently, which in turn limits throughput, availability, and scalability. Peter Bailis gave an excellent talk called Silence is Golden: Coordination-Avoiding Systems Design which explains this in great detail and how coordination can be avoided. In it, he explains how distributed transactions can result in nearly a 400x decrease in throughput in certain situations.

Avoiding coordination enables infinite scale-out while drastically improving throughput and availability, but in some cases coordination is unavoidable. In Coordination Avoidance in Database Systems, Bailis et al. answer a key question: when is coordination necessary for correctness? They present a property, invariant confluence (I-confluence), which is necessary and sufficient for safe, coordination-free, available, and convergent execution. I-confluence essentially works by pushing invariants up into the business layer where we specify correctness in terms of application semantics rather than low-level database operations.

Without knowledge of what “correctness” means to your app (e.g., the invariants used in I-confluence), the best you can do to preserve correctness under a read/write model is serializability.

I-confluence can be determined given a set of transactions and a merge function used to reconcile divergent states. If I-confluence holds, there exists a coordination-free execution strategy that preserves invariants. If it doesn’t hold, no such strategy exists—coordination is required. I-confluence allows us to identify when we can and can’t give up coordination, and by pushing invariants up, we remove a lot of potential bottlenecks from areas which don’t require it.

If we recall, “synchrony” within the context of distributed computing is really just making assumptions about time, so synchronization is basically two or more processes coordinating around time. As we saw, a system which performs no coordination will have optimal performance and availability since everyone can proceed independently. However, a distributed system which performs zero coordination isn’t particularly useful or possible as I-confluence shows. Christopher Meiklejohn’s Strange Loop talk, Distributed, Eventually Consistent Computations, provides an interesting take on coordination with the parable of the car. A car requires friction to drive, but that friction is limited to very small contact points. Any other friction on the car causes problems or inefficiencies. If we think about physical time as friction, we know we can’t eliminate it altogether because it’s essential to the problem, but we want to reduce the use of it in our systems as much as possible. We can typically avoid relying on physical time by instead using logical time, for example, with the use of Lamport clocks or other conflict-resolution techniques. Lamport’s Time, Clocks, and the Ordering of Events in a Distributed System is the classical introduction to this idea.

Often, systems simply forgo coordination altogether for latency-sensitive operations, a perfectly reasonable thing to do provided the trade-off is explicit and well-documented. Sadly, this is frequently not the case. But we can do better. I-confluence provides a useful framework for avoiding coordination, but there’s a seemingly larger lesson to be learned here. What it really advocates is reexamining how we design systems, which seems in some ways to closely parallel our end-to-end argument.

When we think low level, we pay the upfront cost of entry—serializable transactions, linearizable reads and writes, coordination. This seems contradictory to the end-to-end principle. Our application doesn’t really care about atomicity or isolation levels or linearizability. It cares about two users sharing the same ID or two reservations booking the same room or a negative balance in a bank account, but the database doesn’t know that. Sometimes these rules don’t even require any expensive coordination.

If all we do is code our business rules and constraints into the language our infrastructure understands, we end up with a few problems. First, we have to know how to translate our application semantics into these low-level operations while avoiding any impedance mismatch. In the context of messaging, guaranteed delivery doesn’t really mean anything to our application which cares about what’s done with the messages. Second, we preclude ourselves from using a lot of generalized solutions and, in some cases, we end up having to engineer specialized ones ourselves. It’s not clear how well this scales in practice. Third, we pay a performance penalty that could otherwise be avoided (as I-confluence shows). Lastly, we put ourselves at the mercy of our infrastructure and hope it makes good on its promises—it often doesn’t.

Working on a messaging platform team, I’ve had countless conversations which resemble the following exchange:

Developer: “We need fast messaging.”
Me: “Is it okay if messages get dropped occasionally?”
Developer: “What? Of course not! We need it to be reliable.”
Me: “Okay, we’ll add a delivery ack, but what happens if your application crashes before it processes the message?”
Developer: “We’ll ack after processing.”
Me: “What happens if you crash after processing but before acking?”
Developer: “We’ll just retry.”
Me: “So duplicate delivery is okay?”
Developer: “Well, it should really be exactly-once.”
Me: “But you want it to be fast?”
Developer: “Yep. Oh, and it should maintain message ordering.”
Me: “Here’s TCP.”

If, instead, we reevaluate the interactions between our systems, their APIs, their semantics, and move some of that responsibility off of our infrastructure and onto our applications, then maybe we can start to build more robust, resilient, and performant systems. With messaging, does our infrastructure really need to enforce FIFO ordering? Preserving order with distributed messaging in the presence of failure while trying to simultaneously maintain high availability is difficult and expensive. Why rely on it when it can be avoided with commutativity? Likewise, transactional delivery requires coordination which is slow and brittle while still not providing application guarantees. Why rely on it when it can be avoided with idempotence and retries? If you need application-level guarantees, build them into the application level. The infrastructure can’t provide it.

I really like Gregor Hohpe’s “Your Coffee Shop Doesn’t Use Two-Phase Commit” because it shows how simple solutions can be if we just model them off of the real world. It gives me hope we can design better systems, sometimes by just turning things on their head. There’s usually a reason things work the way they do, and it often doesn’t even involve the use of computers or complicated algorithms.

Rather than try to hide complexities by using flaky and heavy abstractions, we should engage directly by recognizing them in our design decisions and thinking end to end. It may be a long and winding path to distributed systems zen, but the best place to start is from the beginning.

I’d like to thank Tom Santero for reviewing an early draft of this writing. Any inaccuracies or opinions expressed are mine alone.

Service-Disoriented Architecture

“You can have a second computer once you’ve shown you know how to use the first one.” -Paul Barham

The first rule of distributed systems is don’t distribute your system until you have an observable reason to. Teams break this rule on the regular. People have been talking about service-oriented architecture for a long time, but only recently have microservices been receiving the hype.

The problem, as Martin Fowler observes, is that teams are becoming too eager to adopt a microservice architecture without first understanding the inherent overheads. A contributing factor, I think, is you only hear the success stories from companies who did it right, like Netflix. However, what folks often fail to realize is that these companies—in almost all cases—didn’t start out that way. There was a long and winding path which led them to where they are today. The inverse of this, which some refer to as microservice envy, is causing teams to rush into microservice hell. I call this service-disoriented architecture (or sometimes disservice-oriented architecture when the architecture is DOA).

The term “monolith” has a very negative connotation—unscalable, unmaintainable, unresilient. These things are not intrinsically tied to each other, however, and there’s no reason a single system can’t be modular, maintainable, and fault tolerant at reasonable scale. It’s just less sexy. Refactoring modular code is much easier than refactoring architecture, and refactoring across service boundaries is equally difficult. Fowler describes this as monolith-first, and I think it’s the right approach (with some exceptions, of course).

Don’t even consider microservices unless you have a system that’s too complex to manage as a monolith. The majority of software systems should be built as a single monolithic application. Do pay attention to good modularity within that monolith, but don’t try to separate it into separate services.

Service-oriented architecture is about organizational complexity and system complexity. If you have both, you have a case to distribute. If you have one of the two, you might have a case (although if you have organizational complexity without system complexity, you’ve probably scaled your organization improperly). If you have neither, you do not have a case to distribute. State, specifically distributed state, is hell, and some pundits argue SOA is satan—perhaps a necessary evil.

There are a lot of motivations for microservices: anti-fragility, fault tolerance, independent deployment and scaling, architectural abstraction, and technology isolation. When services are loosely coupled, the system as a whole tends to be less fragile. When instances are disposable and stateless, services tend to be more fault tolerant because we can spin them up and down, balance traffic, and failover. When responsibility is divided across domain boundaries, services can be independently developed, deployed, and scaled while allowing the right tools to be used for each.

We also need to acknowledge the disadvantages. Adopting a microservice architecture does not automatically buy you anti-fragility. Distributed systems are incredibly precarious. We have to be aware of things like asynchrony, network partitions, node failures, and the trade-off between availability and data consistency. We have to think about resiliency but also the business and UX implications. We have to consider the boundaries of distributed systems like CAP and exactly-once delivery.

When distributing, the emphasis should be on resilience engineering and adopting loosely coupled, stateless components—not microservices for microservices’ sake. We need to view eventual consistency as a tool, not a side effect. The problem I see is that teams often end up with what is essentially a complex, distributed monolith. Now you have two problems. If you’re building a microservice which doesn’t make sense outside the context of another system or isn’t useful on its own, stop and re-evaluate. If you’re designing something to be fast and correct, realize that distributing it will frequently take away both.

Like anti-fragility, microservices do not automatically buy you better maintainability or even scalability. Adopting them requires the proper infrastructure and organization to be in place. Without these, you are bound to fail. In theory, they are intended to increase development velocity, but in many cases the microservice premium ends up slowing it down while creating organizational dependencies and bottlenecks.

There are some key things which must be in place in order for a microservice architecture to be successful: a proper continuous-delivery pipeline, competent DevOps and Ops teams, and prudent service boundaries, to name a few. Good monitoring is essential. It’s also important we have a thorough testing and integration story. This isn’t even considering the fundamental development complexities associated with SOA mentioned earlier.

The better strategy is a bottom-up approach. Start with a monolith or small set of coarse-grained services and work your way up. Make sure you have the data model right. Break out new, finer-grained services as you need to and as you become more confident in your ability to maintain and deploy discrete services. It’s largely about organizational momentum. A young company jumping straight to a microservice architecture is like a golf cart getting on the freeway.

Microservices offer a number of advantages, but for many companies they are a bit of a Holy Grail. Developers are always looking for a silver bullet, but there is always a cost. What we need to do is minimize this cost, and with microservices, this typically means easing our way into it rather than diving into the deep end. Team autonomy and rapid iteration are noble goals, but if we’re not careful, we can end up creating an impedance. Microservices require organization and system maturity. Otherwise, they end up being a premature architectural optimization with a lot of baggage. They end up creating a service-disoriented architecture.

If State Is Hell, SOA Is Satan

More and more companies are describing their success stories regarding the switch to a service-oriented architecture. As with any technological upswing, there’s a clear and palpable hype factor involved (Big Data™ or The Cloud™ anyone?), but obviously it’s not just puff.

While microservices and SOA have seen a staggering rate of adoption in recent years, the mindset of developers often seems to be stuck in the past. I think this is, at least in part, because we seek a mental model we can reason about. It’s why we build abstractions in the first place. In a sense, I would argue there’s a comparison to be made between the explosion of OOP in the early 90’s and today’s SOA trend. After all, SOA is as much about people scale as it is about workload scale, so it makes sense from an organizational perspective.

The Perils of Good Abstractions

While systems are becoming more and more distributed, abstractions are attempting to make them less and less complex. Mesosphere is a perfect example of this, attempting to provide the “datacenter operating system.” Apache Mesos allows you to “program against your datacenter like it’s a single pool of resources.” It’s an appealing proposition to say the least. PaaS like Google App Engine and Heroku offer similar abstractions—write your code without thinking about scale. The problem is you absolutely have to think about scale or you’re bound to run into problems down the road. And while these abstractions are nice, they can be dangerous just the same. Welcome to the perils of good abstractions.

I like to talk about App Engine because I have firsthand experience with it. It’s an easy sell for startups. It handles spinning up instances when you need them, turning them down when you don’t. It’s your app server, database, caching, job scheduler, task queue all in one, and it does it at scale. There’s vendor lock-in, sure, yet it means no ops, no sysadmins, no overhead. Push to deploy. But it’s a leaky abstraction. It has to be. App Engine scales because it’s distributed, but it allows—no, encourages—you to write your system as a monolith. The datastore, memcache, and task queue accesses are masked as RPCs. This is great for our developer mental model, but it will bite you if you’re not careful. App Engine imposes certain limitations to encourage good design; for instance, front-end requests and datastore calls are limited to 60 seconds (it used to be much less), but the leakiness goes beyond that.

RPC is consistently at odds with distributed systems. I would go so far as to say it’s an anti-pattern in many cases. RPC encourages writing synchronous code, but distributed systems are inherently asynchronous. The network is not reliable. The network is not fast. The network is not your friend. Developers who either don’t understand this or don’t realize what’s happening when they make an RPC will write code as if they were calling a function. It will sure as hell look like just calling a function. When we think synchronously, we end up with systems that are slow, fault intolerant, and generally not scalable. To be quite honest, however, this is perfectly acceptable for 90% of startups as they are getting off the ground because they don’t have workloads at meaningful scale.

There’s certainly some irony here. One of the selling points of App Engine is its ability to scale to large amounts of traffic, yet the vast majority of startups would be perfectly suited to scaling up rather than out, perhaps with some failover in place for good measure. Stack Overflow is the poster child of scale-up architecture. In truth, your architecture should be a function of your access patterns, not the other way around (and App Engine is very much tailored to a specific set of access patterns). Nonetheless, it shows that vertical scaling can work. I would bet a lot of startups could sufficiently run on a large, adequately specced machine or maybe a small handful of them.

The cruel irony is that once you hit a certain scale with App Engine, both in terms of your development organization and user base, you’ve reached a point where you have to migrate off it. And if your data model isn’t properly thought out, you will without a doubt hit scale problems. It’s to the point where you need someone with deep knowledge of how App Engine works in order to build quality systems on it. Good luck hiring a team of engineers who understand it. GAE is great at accelerating you to 100 mph, but you better have some nice airbags for the brick wall it launches you into. In fairness, this is a problem every org hits—Conway’s law is very much a reality and every startup has growing pains. To be clear, this isn’t a jab at GAE, which is actually very effective at accelerating a product using little capital and can sustain long-term success given the right use case. Instead, I use it to illustrate a point.

Peering Through the Abstraction

Eventually SOA makes sense, but our abstractions can cause problems if we don’t understand what’s going on behind the curtain (hence the leakiness). Partial failure is all but guaranteed, and latency, partitioning, and other network pressure happens all the time.

Ken Arnold is famed with once saying “state is hell” in reference to designing distributed systems. In the past, I’ve written how scaling shared data is hard, but with SOA it’s practically a requirement. Ken is right though—state is hell, and SOA is fundamentally competing with consistency. The FLP Impossibility result and the CAP theorem can prove it formally, but really this should be intuitively obvious if we accept the laws of physics.

On the other hand, if you store information that I can’t reconstruct, then a whole host of questions suddenly surface. One question is, “Are you now a single point of failure?” I have to talk to you now. I can’t talk to anyone else. So what happens if you go down?

To deal with that, you could be replicated. But now you have to worry about replication strategies. What if I talk to one replicant and modify some data, then I talk to another? Is that modification guaranteed to have already arrived there? What is the replication strategy? What kind of consistency do you need—tight or loose? What happens if the network gets partitioned and the replicants can’t talk to each other? Can anybody proceed?

Essentially, the more stateful your system is, the harder it’s going to be to scale it because distributing that state introduces a rich tapestry of problems. In practice, we often can’t eliminate state wholesale, but basically everything that can be stateless should be stateless.

Making servers disposable allows you a great deal of flexibility. Former Netflix Cloud Architect Adrian Cockcroft articulates this idea well:

You want to think of servers like cattle, not pets. If you have a machine in production that performs a specialized function, and you know it by name, and everyone gets sad when it goes down, it’s a pet. Instead you should think of your servers like a herd of cows. What you care about is how many gallons of milk you get. If one day you notice you’re getting less milk than usual, you find out which cows aren’t producing well and replace them.

This is effectively how App Engine achieves its scalability. With lightweight, stateless, and disposable instances, it can spin them up and down on the fly without worrying about being in an invalid state.

App Engine also relies on eventual consistency as the default model for datastore interactions. This makes queries fast and highly available, while snapshot isolation can be achieved using entity-group transactions if necessary. The latter, of course, can result in a lot of contention and latency. Yet, people seem to have a hard time grappling with the reality of eventual consistency in distributed systems. State is hell, but calling SOA “satan” is clearly a hyperbole. It is a tough problem nevertheless.

A State of Mind

In the situations where we need state, we have to reconcile with the realities of distributed systems. This means understanding the limitations and accepting the complexities, not papering over them. It doesn’t mean throwing away abstractions. Fortunately, distributed computing is the focus of a lot of great research, so there are primitives with which we can build: immutability, causal ordering, eventual consistency, CRDTs, and other ideas.

As long as we recognize the trade-offs, we can design around them. The crux is knowing they exist in the first place. We can’t have ACID semantics while remaining highly available, but we can use Highly Available Transactions to provide strong-enough guarantees. At the same time, not all operations require coordination or concurrency control. The sooner we view eventual consistency as a solution and not a consequence, the sooner we can let go of this existential crisis. Other interesting research includes BOOM, which seeks to provide a high-level, declarative approach to distributed programming.

State might be hell, but it’s a hell we have to live. I don’t advocate an all-out microservice architecture for a company just getting its start. The complications far outweigh any benefits to be gained, but it becomes a necessity at a certain point. The key is having an exit strategy. PaaS providers make this difficult due to vendor lock-in and architectural constraints. Weigh their advantages carefully.

Once you do transition to a SOA, make as many of those services, or the pieces backing them, as stateless as possible. For those which aren’t stateless, know that the problem typically isn’t novel. These problems have been solved or are continuing to be solved in new and interesting ways. Academic research is naturally at the bleeding edge with industry often lagging behind. OOP concepts date back to as early as the 60’s but didn’t gain widespread adoption until several decades later. Distributed computing is no different. SOA is just a state of mind.

Iris Decentralized Cloud Messaging

A couple weeks ago, I published a rather extensive analysis of numerous message queues, both brokered and brokerless. Brokerless messaging is really just another name for peer-to-peer communication. As we saw, the difference in message latency and throughput between peer-to-peer systems and brokered ones is several orders of magnitude. ZeroMQ and nanomsg are able to reliably transmit millions of messages per second at the expense of guaranteed delivery.

Peer-to-peer messaging is decentralized, scalable, and fast, but it brings with it an inherent complexity. There is a dichotomy between how brokerless messaging is conceptualized and how distributed systems are actually built. Distributed systems are composed of services like applications, databases, caches, etc. Services are composed of instances or nodes—individually addressable hosts, either physical or virtual. The key observation is that, conceptually, the unit of interaction lies at the service level, not the instance level. We don’t care about which database server we interact with, we just want to talk to database server (or perhaps multiple). We’re concerned with logical groups of nodes.

While traditional socket-queuing systems like ZeroMQ solve the problem of scaling, they bring about a certain coupling between components. System designers are forced to build applications which communicate with nodes, not services. We can introduce load balancers like HAProxy, but we’re still addressing specific locations while creating potential single points of failure. With lightweight VMs and the pervasiveness of elastic clouds, IP addresses are becoming less and less static—they come and go. The canonical way of dealing with this problem is to use distributed coordination and service discovery via ZooKeeper, et al., but this introduces more configuration, more moving parts, and more headaches.

The reality is that distributed systems are not built with the instance as the smallest unit of composition in mind, they’re built with services in mind. As discussed earlier, a service is simply a logical grouping of nodes. This abstraction is what we attempt to mimic with things like etcd, ZooKeeper and HAProxy. These assemblies are proven, but there are alternative solutions that offer zero configuration, minimal network management, and overall less complexity. One such solution that I want to explore is a distributed messaging framework called Iris.

Decentralized Messaging with Iris

Iris is posited as a decentralized approach to backend messaging middleware. It looks to address several of the fundamental issues with traditional brokerless systems, like tight coupling and security.

In order to avoid the problem of addressing instances, Iris considers clusters to be the smallest logical blocks of which systems are composed. A cluster is a collection of zero or more nodes which are responsible for a certain service sub-task. Clusters are then assembled into services such that they can communicate with each other without any regard as to which instance is servicing their requests or where it’s located. Lastly, services are composed into federations, which allow them to communicate across different clouds.

instances_vs_clusters

This form of composition allows Iris to use semantic or logical addressing instead of the standard physical addressing. Nodes specify the name of the cluster they wish to participate in, while Iris handles the intricacies of routing and balancing. For example, you might have three database servers which belong to a single cluster called “databases.” The cluster is reached by its name and requests are distributed across the three nodes. Iris also takes care of service discovery, detecting new clusters as they are created on the same cloud.

physical_vs_semantic

With libraries like ZeroMQ, security tends to be an afterthought. Iris has been built from the ground-up with security in mind, and it provides a security model that is simple and fast.

Iris uses a relaxed security model that provides perfect secrecy whilst at the same time requiring effectively zero configuration. This is achieved through the observation that if a node of a service is compromised, the whole system is considered undermined. Hence, the unit of security is a service – opposed to individual instances – where any successfully authenticated node is trusted by all. This enables full data protection whilst maintaining the loosely coupled nature of the system.

In practice, what this means is that each cluster uses a single private key. This encryption scheme not only makes deployment trivial, it minimizes the effect security has on speed.

authentication_and_encryption

Like ZeroMQ and nanomsg, Iris offers a few different messaging patterns. It provides the standard request-reply and publish-subscribe schemes, but it’s important to remember that the smallest addressable unit is the cluster, not the node. As such, requests are targeted at a cluster and subsequently relayed on to a member in a load-balanced fashion. Publish-subscribe, on the other hand, is not targeted at a single cluster. It allows members of any cluster to subscribe and publish to a topic.

Iris also implements two patterns called “broadcast” and “tunnel.” While request-reply forwards a message to one member of a cluster, broadcast forwards it to all members. The caveat is that there is no way to listen for responses to a broadcast.

Tunnel is designed to address the problem of stateful or streaming transactions where a communication between two endpoints may consist of multiple data exchanges which need to occur as an atomic operation. It provides the guarantee of in-order and throttled message delivery by establishing a channel between a client and a node.

schemes

Performance Characteristics

According to its author, Iris is still in a “feature phase” and hasn’t been optimized for speed. Since it’s written in Go, I’ve compared its pub/sub benchmark performance with other Go messaging libraries, NATS and NSQ. As before, these benchmarks shouldn’t be taken as gospel, the code is available here, and pull requests are welcome.

We can see that Iris is comparable to NSQ on the sending side and about 4x on the receiving side, at least out of the box.

Conclusion

Brokerless systems like ZeroMQ and nanomsg offer considerably higher throughput and less latency than classical message-oriented middleware but require greater orchestration of network topologies. They offer high scalability but can lead to tighter coupling between components. Traditional brokered message queues, like those of the AMQP variety, tend to be slower while providing more guarantees and reduced coupling. However, they are also more prone to scale problems like availability and partitioning.

In terms of its qualities, Iris appears to be a reasonable compromise between the decentralized nature of the brokerless systems and the minimal-configuration and management of the brokered ones. Its intrinsic value lies in its ability to hide the complexities of the underlying infrastructure behind distributed systems. Rather, Iris lends itself to building large-scale systems the way we conceptualize and reason about them—by using services as the building blocks, not instances.

Dissecting Message Queues

Continuing my series on message queues, I spent this weekend dissecting various libraries for performing distributed messaging. In this analysis, I look at a few different aspects, including API characteristics, ease of deployment and maintenance, and performance qualities. The message queues have been categorized into two groups: brokerless and brokered. Brokerless message queues are peer-to-peer such that there is no middleman involved in the transmission of messages, while brokered queues have some sort of server in between endpoints.

The systems I’ll be analyzing are:

Brokerless
nanomsg
ZeroMQ

Brokered
ActiveMQ
NATS
Kafka
Kestrel
NSQ
RabbitMQ
Redis
ruby-nats

To start, let’s look at the performance metrics since this is arguably what people care the most about. I’ve measured two key metrics: throughput and latency. All tests were run on a MacBook Pro 2.6 GHz i7, 16GB RAM. These tests are evaluating a publish-subscribe topology with a single producer and single consumer. This provides a good baseline. It would be interesting to benchmark a scaled-up topology but requires more instrumentation.

The code used for benchmarking, written in Go, is available on GitHub. The results below shouldn’t be taken as gospel as there are likely optimizations that can be made to squeeze out performance gains. Pull requests are welcome.

Throughput Benchmarks

Throughput is the number of messages per second the system is able to process, but what’s important to note here is that there is no single “throughput” that a queue might have. We’re sending messages between two different endpoints, so what we observe is a “sender” throughput and a “receiver” throughput—that is, the number of messages that can be sent per second and the number of messages that can be received per second.

This test was performed by sending 1,000,000 1KB messages and measuring the time to send and receive on each side. Many performance tests tend to use smaller messages in the range of 100 to 500 bytes. I chose 1KB because it’s more representative of what you might see in a production environment, although this varies case by case. For message-oriented middleware systems, only one broker was used. In most cases, a clustered environment would yield much better results.Unsurprisingly, there’s higher throughput on the sending side. What’s interesting, however, is the disparity in the sender-to-receiver ratios. ZeroMQ is capable of sending over 5,000,000 messages per second but is only able to receive about 600,000/second. In contrast, nanomsg sends shy of 3,000,000/second but can receive almost 2,000,000.

Now let’s take a look at the brokered message queues. Intuitively, we observe that brokered message queues have dramatically less throughput than their brokerless counterparts by a couple orders of magnitude for the most part. Half the brokered queues have a throughput below 25,000 messages/second. The numbers for Redis might be a bit misleading though. Despite providing pub/sub functionality, it’s not really designed to operate as a robust messaging queue. In a similar fashion to ZeroMQ, Redis disconnects slow clients, and it’s important to point out that it was not able to reliably handle this volume of messaging. As such, we consider it an outlier. Kafka and ruby-nats have similar performance characteristics to Redis but were able to reliably handle the message volume without intermittent failures. The Go implementation of NATS, gnatsd, has exceptional throughput for a brokered message queue.

Outliers aside, we see that the brokered queues have fairly uniform throughputs. Unlike the brokerless libraries, there is little-to-no disparity in the sender-to-receiver ratios, which themselves are all very close to one.

Latency Benchmarks

The second key performance metric is message latency. This measures how long it takes for a message to be transmitted between endpoints. Intuition might tell us that this is simply the inverse of throughput, i.e. if throughput is messages/second, latency is seconds/message. However, by looking closely at this image borrowed from a ZeroMQ white paper, we can see that this isn’t quite the case. latency The reality is that the latency per message sent over the wire is not uniform. It can vary wildly for each one. In truth, the relationship between latency and throughput is a bit more involved. Unlike throughput, however, latency is not measured at the sender or the receiver but rather as a whole. But since each message has its own latency, we will look at the averages of all of them. Going further, we will see how the average message latency fluctuates in relation to the number of messages sent. Again, intuition tells us that more messages means more queueing, which means higher latency.

As we did before, we’ll start by looking at the brokerless systems.
In general, our hypothesis proves correct in that, as more messages are sent through the system, the latency of each message increases. What’s interesting is the tapering at the 500,000-point in which latency appears to increase at a slower rate as we approach 1,000,000 messages. Another interesting observation is the initial spike in latency between 1,000 and 5,000 messages, which is more pronounced with nanomsg. It’s difficult to pinpoint causation, but these changes might be indicative of how message batching and other network-stack traversal optimizations are implemented in each library. More data points may provide better visibility.

We see some similar patterns with brokered queues and also some interesting new ones.

Redis behaves in a similar manner as before, with an initial latency spike and then a quick tapering off. It differs in that the tapering becomes essentially constant right after 5,000 messages. NSQ doesn’t exhibit the same spike in latency and behaves, more or less, linearly. Kestrel fits our hypothesis.

Notice that ruby-nats and NATS hardly even register on the chart. They exhibited surprisingly low latencies and unexpected relationships with the number of messages.Remarkably, the message latencies for ruby-nats and NATS appear to be constant. This is counterintuitive to our hypothesis.

You may have noticed that Kafka, ActiveMQ, and RabbitMQ were absent from the above charts. This was because their latencies tended to be orders-of-magnitude higher than the other brokered message queues, so ActiveMQ and RabbitMQ were grouped into their own AMQP category. I’ve also included Kafka since it’s in the same ballpark.

Here we see that RabbitMQ’s latency is constant, while ActiveMQ and Kafka are linear. What’s unclear is the apparent disconnect between their throughput and mean latencies.

Qualitative Analysis

Now that we’ve seen some empirical data on how these different libraries perform, I’ll take a look at how they work from a pragmatic point of view. Message throughput and speed is important, but it isn’t very practical if the library is difficult to use, deploy, or maintain.

ZeroMQ and Nanomsg

Technically speaking, nanomsg isn’t a message queue but rather a socket-style library for performing distributed messaging through a variety of convenient patterns. As a result, there’s nothing to deploy aside from embedding the library itself within your application. This makes deployment a non-issue.

Nanomsg is written by one of the ZeroMQ authors, and as I discussed before, works in a very similar way to that library. From a development standpoint, nanomsg provides an overall cleaner API. Unlike ZeroMQ, there is no notion of a context in which sockets are bound to. Furthermore, nanomsg provides pluggable transport and messaging protocols, which make it more open to extension. Its additional built-in scalability protocols also make it quite appealing.

Like ZeroMQ, it guarantees that messages will be delivered atomically intact and ordered but does not guarantee the delivery of them. Partial messages will not be delivered, and it’s possible that some messages won’t be delivered at all. The library’s author, Martin Sustrik, makes this abundantly clear:

Guaranteed delivery is a myth. Nothing is 100% guaranteed. That’s the nature of the world we live in. What we should do instead is to build an internet-like system that is resilient in face of failures and routes around damage.

The philosophy is to use a combination of topologies to build resilient systems that add in these guarantees in a best-effort sort of way.

On the other hand, nanomsg is still in beta and may not be considered production-ready. Consequently, there aren’t a lot of resources available and not much of a development community around it.

ZeroMQ is a battle-tested messaging library that’s been around since 2007. Some may perceive it as a predecessor to nanomsg, but what nano lacks is where ZeroMQ thrives—a flourishing developer community and a deluge of resources and supporting material. For many, it’s the de facto tool for building fast, asynchronous distributed messaging systems that scale.

Like nanomsg, ZeroMQ is not a message-oriented middleware and simply operates as a socket abstraction. In terms of usability, it’s very much the same as nanomsg, although its API is marginally more involved.

ActiveMQ and RabbitMQ

ActiveMQ and RabbitMQ are implementations of AMQP. They act as brokers which ensure messages are delivered. ActiveMQ and RabbitMQ support both persistent and non-persistent delivery. By default, messages are written to disk such that they survive a broker restart. They also support synchronous and asynchronous sending of messages with the former having substantial impact on latency. To guarantee delivery, these brokers use message acknowledgements which also incurs a massive latency penalty.

As far as availability and fault tolerance goes, these brokers support clustering through shared storage or shared nothing. Queues can be replicated across clustered nodes so there is no single point of failure or message loss.

AMQP is a non-trivial protocol which its creators claim to be over-engineered. These additional guarantees are made at the expense of major complexity and performance trade-offs. Fundamentally, clients are more difficult to implement and use.

Since they’re message brokers, ActiveMQ and RabbitMQ are additional moving parts that need to be managed in your distributed system, which brings deployment and maintenance costs. The same is true for the remaining message queues being discussed.

NATS and Ruby-NATS

NATS (gnatsd) is a pure Go implementation of the ruby-nats messaging system. NATS is distributed messaging rethought to be less enterprisey and more lightweight (this is in direct contrast to systems like ActiveMQ, RabbitMQ, and others). Apcera’s Derek Collison, the library’s author and former TIBCO architect, describes NATS as “more like a nervous system” than an enterprise message queue. It doesn’t do persistence or message transactions, but it’s fast and easy to use. Clustering is supported so it can be built on top of with high availability and failover in mind, and clients can be sharded. Unfortunately, TLS and SSL are not yet supported in NATS (they are in the ruby-nats) but on the roadmap.

As we observed earlier, NATS performs far better than the original Ruby implementation. Clients can be used interchangeably with NATS and ruby-nats.

Kafka

Originally developed by LinkedIn, Kafka implements publish-subscribe messaging through a distributed commit log. It’s designed to operate as a cluster that can be consumed by large amounts of clients. Horizontal scaling is done effortlessly using ZooKeeper so that additional consumers and brokers can be introduced seamlessly. It also transparently takes care of cluster rebalancing.

Kafka uses a persistent commit log to store messages on the broker. Unlike other durable queues which usually remove persisted messages on consumption, Kafka retains them for a configured period of time. This means that messages can be “replayed” in the event that a consumer fails.

ZooKeeper makes managing Kafka clusters relatively easy, but it does introduce yet another element that needs to be maintained. That said, Kafka exposes a great API and Shopify has an excellent Go client called Sarama that makes interfacing with Kafka very accessible.

Kestrel

Kestrel is a distributed message queue open sourced by Twitter. It’s intended to be fast and lightweight. Because of this, it has no concept of clustering or failover. While Kafka is built from the ground up to be clustered through ZooKeeper, the onus of message partitioning is put upon the clients of Kestrel. There is no cross-communication between nodes. It makes this trade-off in the name of simplicity. It features durable queues, item expiration, transactional reads, and fanout queues while operating over Thrift or memcache protocols.

Kestrel is designed to be small, but this means that more work must be done by the developer to build out a robust messaging system on top of it. Kafka seems to be a more “all-in-one” solution.

NSQ

NSQ is a messaging platform built by Bitly. I use the word platform because there’s a lot of tooling built around NSQ to make it useful for real-time distributed messaging. The daemon that receives, queues, and delivers messages to clients is called nsqd. The daemon can run standalone, but NSQ is designed to run in as a distributed, decentralized topology. To achieve this, it leverages another daemon called nsqlookupd. Nsqlookupd acts as a service-discovery mechanism for nsqd instances. NSQ also provides nsqadmin, which is a web UI that displays real-time cluster statistics and acts as a way to perform various administrative tasks like clearing queues and managing topics.

By default, messages in NSQ are not durable. It’s primarily designed to be an in-memory message queue, but queue sizes can be configured such that after a certain point, messages will be written to disk. Despite this, there is no built-in replication. NSQ uses acknowledgements to guarantee message delivery, but the order of delivery is not guaranteed. Messages can also be delivered more than once, so it’s the developer’s responsibility to introduce idempotence.

Similar to Kafka, additional nodes can be added to an NSQ cluster seamlessly. It also exposes both an HTTP and TCP API, which means you don’t actually need a client library to push messages into the system. Despite all the moving parts, it’s actually quite easy to deploy. Its API is also easy to use and there are a number of client libraries available.

Redis

Last up is Redis. While Redis is great for lightweight messaging and transient storage, I can’t advocate its use as the backbone of a distributed messaging system. Its pub/sub is fast but its capabilities are limited. It would require a lot of work to build a robust system. There are solutions better suited to the problem, such as those described above, and there are also some scaling concerns with it.

These matters aside, Redis is easy to use, it’s easy to deploy and manage, and it has a relatively small footprint. Depending on the use case, it can be a great choice for real-time messaging as I’ve explored before.

Conclusion

The purpose of this analysis is not to present some sort of “winner” but instead showcase a few different options for distributed messaging. There is no “one-size-fits-all” option because it depends entirely on your needs. Some use cases require fast, fire-and-forget messages, others require delivery guarantees. In fact, many systems will call for a combination of these. My hope is that this dissection will offer some insight into which solutions work best for a given problem so that you can make an intelligent decision.

A Look at Nanomsg and Scalability Protocols (Why ZeroMQ Shouldn’t Be Your First Choice)

Earlier this month, I explored ZeroMQ and how it proves to be a promising solution for building fast, high-throughput, and scalable distributed systems. Despite lending itself quite well to these types of problems, ZeroMQ is not without its flaws. Its creators have attempted to rectify many of these shortcomings through spiritual successors Crossroads I/O and nanomsg.

The now-defunct Crossroads I/O is a proper fork of ZeroMQ with the true intention being to build a viable commercial ecosystem around it. Nanomsg, however, is a reimagining of ZeroMQ—a complete rewrite in C1. It builds upon ZeroMQ’s rock-solid performance characteristics while providing several vital improvements, both internal and external. It also attempts to address many of the strange behaviors that ZeroMQ can often exhibit. Today, I’ll take a look at what differentiates nanomsg from its predecessor and implement a use case for it in the form of service discovery.

Nanomsg vs. ZeroMQ

A common gripe people have with ZeroMQ is that it doesn’t provide an API for new transport protocols, which essentially limits you to TCP, PGM, IPC, and ITC. Nanomsg addresses this problem by providing a pluggable interface for transports and messaging protocols. This means support for new transports (e.g. WebSockets) and new messaging patterns beyond the standard set of PUB/SUB, REQ/REP, etc.

Nanomsg is also fully POSIX-compliant, giving it a cleaner API and better compatibility. No longer are sockets represented as void pointers and tied to a context—simply initialize a new socket and begin using it in one step. With ZeroMQ, the context internally acts as a storage mechanism for global state and, to the user, as a pool of I/O threads. This concept has been completely removed from nanomsg.

In addition to POSIX compliance, nanomsg is hoping to be interoperable at the API and protocol levels, which would allow it to be a drop-in replacement for, or otherwise interoperate with, ZeroMQ and other libraries which implement ZMTP/1.0 and ZMTP/2.0. It has yet to reach full parity, however.

ZeroMQ has a fundamental flaw in its architecture. Its sockets are not thread-safe. In and of itself, this is not problematic and, in fact, is beneficial in some cases. By isolating each object in its own thread, the need for semaphores and mutexes is removed. Threads don’t touch each other and, instead, concurrency is achieved with message passing. This pattern works well for objects managed by worker threads but breaks down when objects are managed in user threads. If the thread is executing another task, the object is blocked. Nanomsg does away with the one-to-one relationship between objects and threads. Rather than relying on message passing, interactions are modeled as sets of state machines. Consequently, nanomsg sockets are thread-safe.

Nanomsg has a number of other internal optimizations aimed at improving memory and CPU efficiency. ZeroMQ uses a simple trie structure to store and match PUB/SUB subscriptions, which performs nicely for sub-10,000 subscriptions but quickly becomes unreasonable for anything beyond that number. Nanomsg uses a space-optimized trie called a radix tree to store subscriptions. Unlike its predecessor, the library also offers a true zero-copy API which greatly improves performance by allowing memory to be copied from machine to machine while completely bypassing the CPU.

ZeroMQ implements load balancing using a round-robin algorithm. While it provides equal distribution of work, it has its limitations. Suppose you have two datacenters, one in New York and one in London, and each site hosts instances of “foo” services. Ideally, a request made for foo from New York shouldn’t get routed to the London datacenter and vice versa. With ZeroMQ’s round-robin balancing, this is entirely possible unfortunately. One of the new user-facing features that nanomsg offers is priority routing for outbound traffic. We avoid this latency problem by assigning priority one to foo services hosted in New York for applications also hosted there. Priority two is then assigned to foo services hosted in London, giving us a failover in the event that foos in New York are unavailable.

Additionally, nanomsg offers a command-line tool for interfacing with the system called nanocat. This tool lets you send and receive data via nanomsg sockets, which is useful for debugging and health checks.

Scalability Protocols

Perhaps most interesting is nanomsg’s philosophical departure from ZeroMQ. Instead of acting as a generic networking library, nanomsg intends to provide the “Lego bricks” for building scalable and performant distributed systems by implementing what it refers to as “scalability protocols.” These scalability protocols are communication patterns which are an abstraction on top of the network stack’s transport layer. The protocols are fully separated from each other such that each can embody a well-defined distributed algorithm. The intention, as stated by nanomsg’s author Martin Sustrik, is to have the protocol specifications standardized through the IETF.

Nanomsg currently defines six different scalability protocols: PAIR, REQREP, PIPELINE, BUS, PUBSUB, and SURVEY.

PAIR (Bidirectional Communication)

PAIR implements simple one-to-one, bidirectional communication between two endpoints. Two nodes can send messages back and forth to each other.

REQREP (Client Requests, Server Replies)

The REQREP protocol defines a pattern for building stateless services to process user requests. A client sends a request, the server receives the request, does some processing, and returns a response.

PIPELINE (One-Way Dataflow)

PIPELINE provides unidirectional dataflow which is useful for creating load-balanced processing pipelines. A producer node submits work that is distributed among consumer nodes.

BUS (Many-to-Many Communication)

BUS allows messages sent from each peer to be delivered to every other peer in the group.

PUBSUB (Topic Broadcasting)

PUBSUB allows publishers to multicast messages to zero or more subscribers. Subscribers, which can connect to multiple publishers, can subscribe to specific topics, allowing them to receive only messages that are relevant to them.

SURVEY (Ask Group a Question)

The last scalability protocol, and the one in which I will further examine by implementing a use case with, is SURVEY. The SURVEY pattern is similar to PUBSUB in that a message from one node is broadcasted to the entire group, but where it differs is that each node in the group responds to the message. This opens up a wide variety of applications because it allows you to quickly and easily query the state of a large number of systems in one go. The survey respondents must respond within a time window configured by the surveyor.

Implementing Service Discovery

As I pointed out, the SURVEY protocol has a lot of interesting applications. For example:

  • What data do you have for this record?
  • What price will you offer for this item?
  • Who can handle this request?

To continue exploring it, I will implement a basic service-discovery pattern. Service discovery is a pretty simple question that’s well-suited for SURVEY: what services are out there? Our solution will work by periodically submitting the question. As services spin up, they will connect with our service discovery system so they can identify themselves. We can tweak parameters like how often we survey the group to ensure we have an accurate list of services and how long services have to respond.

This is great because 1) the discovery system doesn’t need to be aware of what services there are—it just blindly submits the survey—and 2) when a service spins up, it will be discovered and if it dies, it will be “undiscovered.”

Here is the ServiceDiscovery class:

The discover method submits the survey and then collects the responses. Notice we construct a SURVEYOR socket and set the SURVEYOR_DEADLINE option on it. This deadline is the number of milliseconds from when a survey is submitted to when a response must be received—adjust it accordingly based on your network topology. Once the survey deadline has been reached, a NanoMsgAPIError is raised and we break the loop. The resolve method will take the name of a service and randomly select an available provider from our discovered services.

We can then wrap ServiceDiscovery with a daemon that will periodically run discover.

The discovery parameters are configured through environment variables which I inject into a Docker container.

Services must connect to the discovery system when they start up. When they receive a survey, they should respond by identifying what service they provide and where the service is located. One such service might look like the following:

Once again, we configure parameters through environment variables set on a container. Note that we connect to the discovery system with a RESPONDENT socket which then responds to service queries with the service name and address. The service itself uses a REP socket that simply responds to any requests with “The answer is 42,” but it could take any number of forms such as HTTP, raw socket, etc.

The full code for this example, including Dockerfiles, can be found on GitHub.

Nanomsg or ZeroMQ?

Based on all the improvements that nanomsg makes on top of ZeroMQ, you might be wondering why you would use the latter at all. Nanomsg is still relatively young. Although it has numerous language bindings, it hasn’t reached the maturity of ZeroMQ which has a thriving development community. ZeroMQ has extensive documentation and other resources to help developers make use of the library, while nanomsg has very little. Doing a quick Google search will give you an idea of the difference (about 500,000 results for ZeroMQ to nanomsg’s 13,500).

That said, nanomsg’s improvements and, in particular, its scalability protocols make it very appealing. A lot of the strange behaviors that ZeroMQ exposes have been resolved completely or at least mitigated. It’s actively being developed and is quickly gaining more and more traction. Technically, nanomsg has been in beta since March, but it’s starting to look production-ready if it’s not there already.

  1. The author explains why he should have originally written ZeroMQ in C instead of C++. []

Distributed Messaging with ZeroMQ

“A distributed system is one in which the failure of a computer you didn’t even know existed can render your own computer unusable.” -Leslie Lamport

With the increased prevalence and accessibility of cloud computing, distributed systems architecture has largely supplanted more monolithic constructs. The implication of using a service-oriented architecture, of course, is that you now have to deal with a myriad of difficulties that previously never existed, such as fault tolerance, availability, and horizontal scaling. Another interesting layer of complexity is providing consistency across nodes, which itself is a problem surrounded with endless research. Algorithms like Paxos and Raft attempt to provide solutions for managing replicated data, while other solutions offer eventual consistency.

Building scalable, distributed systems is not a trivial feat, but it pales in comparison to building real-time systems of a similar nature. Distributed architecture is a well-understood problem and the fact is, most applications have a high tolerance for latency. Few systems have a demonstrable need for real-time communication, but the few that do present an interesting challenge for developers. In this article, I explore the use of ZeroMQ to approach the problem of distributed, real-time messaging in a scalable manner while also considering the notion of eventual consistency.

The Intelligent Transport Layer

ZeroMQ is a high-performance asynchronous messaging library written in C++. It’s not a dedicated message broker but rather an embeddable concurrency framework with support for direct and fan-out endpoint connections over a variety of transports. ZeroMQ implements a number of different communication patterns like request-reply, pub-sub, and push-pull through TCP, PGM (multicast), in-process, and inter-process channels. The glaring lack of UDP support is, more or less, by design because ZeroMQ was conceived to provide guaranteed-ish delivery of atomic messages. The library makes no actual guarantee of delivery, but it does make a best effort. What ZeroMQ does guarantee, however, is that you will never receive a partial message, and messages will be received in order. This is important because UDP’s performance gains really only manifest themselves in lossy or congested environments.

The comprehensive list of messaging patterns and transports alone make ZeroMQ an appealing choice for building distributed applications, but it particularly excels due to its reliability, scalability and high throughput. ZeroMQ and related technologies are popular within high-frequency trading, where packet loss of financial data is often unacceptable1. In 2011, CERN actually performed a study comparing CORBA, Ice, Thrift, ZeroMQ, and several other protocols for use in its particle accelerators and ranked ZeroMQ the highest.

cern

ZeroMQ uses some tricks that allow it to actually outperform TCP sockets in terms of throughput such as intelligent message batching, minimizing network-stack traversals, and disabling Nagle’s algorithm. By default (and when possible), messages are queued on the subscriber, which attempts to avoid the problem of slow subscribers. However, when this isn’t sufficient, ZeroMQ employs a pattern called the “Suicidal Snail.” When a subscriber is running slow and is unable to keep up with incoming messages, ZeroMQ convinces the subscriber to kill itself. “Slow” is determined by a configurable high-water mark. The idea here is that it’s better to fail fast and allow the issue to be resolved quickly than to potentially allow stale data to flow downstream. Again, think about the high-frequency trading use case.

A Distributed, Scalable, and Fast Messaging Architecture

ZeroMQ makes a convincing case for use as a transport layer. Let’s explore a little deeper to see how it could be used to build a messaging framework for use in a real-time system. ZeroMQ is fairly intuitive to use and offers a plethora of bindings for various languages, so we’ll focus more on the architecture and messaging paradigms than the actual code.

About a year ago, while I first started investigating ZeroMQ, I built a framework to perform real-time messaging and document syncing called Zinc. A “document,” in this sense, is any well-structured and mutable piece of data—think text document, spreadsheet, canvas, etc. While purely academic, the goal was to provide developers with a framework for building rich, collaborative experiences in a distributed manner.

The framework actually had two implementations, one backed by the native ZeroMQ, and one backed by the pure Java implementation, JeroMQ2. It was really designed to allow any transport layer to be used though.

Zinc is structured around just a few core concepts: Endpoints, ChannelListeners, MessageHandlers, and Messages. An Endpoint represents a single node in an application cluster and provides functionality for sending and receiving messages to and from other Endpoints. It has outbound and inbound channels for transmitting messages to peers and receiving them, respectively.

endpoint

ChannelListeners essentially act as daemons listening for incoming messages when the inbound channel is open on an Endpoint. When a message is received, it’s passed to a thread pool to be processed by a MessageHandler. Therefore, Messages are processed asynchronously in the order they are received, and as mentioned earlier, ZeroMQ guarantees in-order message delivery. As an aside, this is before I began learning Go, which would make for an ideal replacement for Java here as it’s quite well-suited to the problem :)

Messages are simply the data being exchanged between Endpoints, from which we can build upon with Documents and DocumentFragments. A Document is the structured data defined by an application, while DocumentFragment represents a partial Document, or delta, which can be as fine- or coarse- grained as needed.

Zinc is built around the publish-subscribe and push-pull messaging patterns. One Endpoint will act as the host of a cluster, while the others act as clients. With this architecture, the host acts as a publisher and the clients as subscribers. Thus, when a host fires off a Message, it’s delivered to every subscribing client in a multicast-like fashion. Conversely, clients also act as “push” Endpoints with the host being a “pull” Endpoint. Clients can then push Messages into the host’s Message queue from which the host is pulling from in a first-in-first-out manner.

This architecture allows Messages to be propagated across the entire cluster—a client makes a change which is sent to the host, who propagates this delta to all clients. This means that the client who initiated the change will receive an “echo” delta, but it will be discarded by checking the Message origin, a UUID which uniquely identifies an Endpoint. Clients are then responsible for preserving data consistency if necessary, perhaps through operational transformation or by maintaining a single source of truth from which clients can reconcile.

cluster

One of the advantages of this architecture is that it scales reasonably well due to its composability. Specifically, we can construct our cluster as a tree of clients with arbitrary breadth and depth. Obviously, the more we scale horizontally or vertically, the more latency we introduce between edge nodes. Coupled with eventual consistency, this can cause problems for some applications but might be acceptable to others.

scalability

The downside is this inherently introduces a single point of failure characterized by the client-server model. One solution might be to promote another node when the host fails and balance the tree.

Once again, this framework was mostly academic and acted as a way for me to test-drive ZeroMQ, although there are some other interesting applications of it. Since the framework supports multicast message delivery via push-pull or publish-subscribe mechanisms, one such use case is autonomous load balancing.

Paired with something like ZooKeeper, etcd, or some other service-discovery protocol, clients would be capable of discovering hosts, who act as load balancers. Once a client has discovered a host, it can request to become a part of that host’s cluster. If the host accepts the request, the client can begin to send messages to the host (and, as a result, to the rest of the cluster) and, likewise, receive messages from the host (and the rest of the cluster). This enables clients and hosts to submit work to the cluster such that it’s processed in an evenly distributed way, and workers can determine whether to pass work on further down the tree or process it themselves. Clients can choose to participate in load-balancing clusters at their own will and when they become available, making them mostly autonomous. Clients could then be quickly spun-up and spun-down using, for example, Docker containers.

ZeroMQ is great for achieving reliable, fast, and scalable distributed messaging, but it’s equally useful for performing parallel computation on a single machine or several locally networked ones by facilitating in- and inter- process communication using the same patterns. It also scales in the sense that it can effortlessly leverage multiple cores on each machine. ZeroMQ is not a replacement for a message broker, but it can work in unison with traditional message-oriented middleware. Combined with Protocol Buffers and other serialization methods, ZeroMQ makes it easy to build extremely high-throughput messaging frameworks.

  1. ZeroMQ’s founder, iMatix, was responsible for moving JPMorgan Chase and the Dow Jones Industrial Average trading platforms to OpenAMQ []
  2. In systems where near real-time is sufficient, JeroMQ is adequate and benefits by not requiring any native linking. []

Real-Time Client Notifications Using Redis and Socket.IO

Backbone.js is great for building structured client-side applications. Its declarative event-handling makes it easy to listen for actions in the UI and keep your data model in sync, but what about changes that occur to your data model on the server? Coordinating user interfaces for data consistency isn’t a trivial problem. Take a simple example: users A and B are viewing the same data at the same time, while user A makes a change to that data. How do we propagate those changes to user B? Now, how do we do it at scale, say, several thousand concurrent users? What about external consumers of that data?

One of our products at WebFilings called for real-time notifications for a few reasons:

  1. We needed to keep users’ view of data consistent.
  2. We needed a mechanism that would alert users to changes in the web client (and allow them to subscribe/unsubscribe to certain events).
  3. We needed notifications to be easily consumable (beyond the scope of a web client, e.g. email alerts, monitoring services, etc.).

I worked on developing a pattern that would address each of these concerns while fitting within our platform’s ecosystem, giving us a path of least resistance with maximum payoff.

Polling sucks. Long-polling isn’t much better. Server-Sent Events are an improvement. They provide a less rich API than the WebSocket protocol, which supports bi-directional communication, but they do have some niceties like handling reconnects and operating over traditional HTTP. Socket.IO provides a nice wrapper around WebSockets while falling back to other transport methods when necessary. It has a rich API with features like namespaces, multiplexing, and reconnects, but it’s built on Node.js, which means it doesn’t plug into our Python stack very easily.

The solution I decided on was a library called gevent-socketio, which is a Python implementation of the Socket.IO protocol built on gevent, making it incredibly simple to hook in to our existing Flask app. 

The gevent-socketio solution really only solves a small part of the overarching problem by providing a way to broadcast messages to clients. We still need a way to hook these messages in to our Backbone application and, more important, a way to publish and subscribe to events across threads and processes. The Socket.IO dispatcher is just one of potentially many consumers after all.

The other piece of the solution is to use Redis for its excellent pubsub capabilities. Redis allows us to publish and subscribe to messages from anywhere, even from different machines. Events that occur as a result of user actions, task queues, or cron jobs can all be captured and published to any interested parties as they happen. We’re already using Redis as a caching layer, so we get this for free. The overall architecture looks something like this:

pubsub

Let’s dive into the code.

Hooking gevent-socketio into our Flask app is pretty straightforward. We essentially just wrap it with a SocketIOServer.

The other piece is registering client subscribers for notifications:

NotificationsNamespace is a Socket.IO namespace we will use to broadcast notification messages. We use gevent-socketio’s BroadcastMixin to multicast messages to clients.

When a connection is received, we spawn a greenlet that listens for messages and broadcasts them to clients in the notifications namespace. We can then build a minimal API that can be used across our application to publish notifications.

Wiring notifications up to the UI is equally simple. To facilitate communication between our Backbone components while keeping them decoupled, we use an event-dispatcher pattern relying on Backbone.Events. The pattern looks something like this:

This pattern makes it trivial for us to allow our views, collections, and models to subscribe to our Socket.IO notifications because we just have to pump the messages into the dispatcher pipeline.

Now our UI components can subscribe and react to client- and server-side events as they see fit and in a completely decoupled fashion. This makes it very easy for us to ensure our client-side views and models are updated automatically while also letting other services consume these events.

Modularizing Infinitum: A Postmortem

In addition to getting the code migrated from Google Code to GitHub, one of my projects over the holidays was to modularize the Infinitum Android framework I’ve been working on for the past year.

Infinitum began as a SQLite ORM and quickly grew to include a REST ORM implementation,  REST client, logging wrapper, DI framework, AOP module, and, of course, all of the framework tools needed to support these various functionalities. It evolved as I added more and more features in a semi-haphazard way. In my defense, the code was organized. It was logical. It made sense. There was no method, but there also was no madness. Everything was in an appropriately named package. Everything was coded to an interface. There was no duplicated code. However, modularity — in terms of minimizing framework dependencies — wasn’t really in mind at the time, and the code was all in a single project.

The Wild, Wild West

The issue wasn’t how the code was organized, it was how the code was integrated. The project was cowboy coding at its finest. I was the only stakeholder, the only tester, the only developer — judge, jury, and executioner. I was building it for my own personal use after all. Consequently, there was no planning involved, unit testing was somewhere between minimal and non-existent, and what got done was at my complete discretion. Ultimately, what was completed any given day, more or less, came down to what I felt like working on.

What started as an ORM framework became a REST framework, which became a logging framework, which became an IOC framework, which became an AOP framework. All of these features, built from the ground up, were tied together through a context, which provided framework configuration data. More important, the Infinitum context stored the bean factory used for storing and retrieving bean definitions used by both the framework and the client. The different modules themselves were not tightly coupled, but they were connected to the context like feathers on a bird.

infinitum-arch

The framework began to grow large. It was only about 300KB of actual code (JARed without ProGuard compression), but it had a number of library dependencies, namely Dexmaker, Simple XML, and GSON, which is over 1MB combined in size. Since it’s an Android framework, I wanted to keep the footprint as small as possible. Additionally, it’s likely that someone wouldn’t be using all of the features in the framework. Maybe they just need the SQLite ORM, or just the REST client, or just dependency injection. The way the framework was structured, they had to take it all or none.

A Painter Looking for a Brush

I began to investigate ways to modularize it. As I illustrated, the central problem lay in the fact that the Infinitum context had knowledge of all of the different modules and was responsible for calling and configuring their APIs. If the ORM is an optional dependency, the context should not need to have knowledge of it. How can the modules be decoupled from the context?

Obviously, there is a core dependency, Infinitum Core, which consists of the framework essentials. These are things used throughout the framework in all of the modules — logging, DI1, exceptions, and miscellaneous utilities. The goal was to pull off ORM, REST, and AOP modules.

My initial approach was to try and use the decorator pattern to “decorate” the Infinitum context with additional functionality. The OrmContextDecorator would implement the ORM-specific methods, the AopContextDecorator would implement the AOP-specific methods, and so on. The problem with this was that it would still require the module-specific methods to be declared in the Infinitum context interface. Not only would they need to be stubbed out in the context implementation, a lot of module interfaces would need to be shuffled and placed in Infinitum Core  in order to satisfy the compiler. The problem remained; the context still had knowledge of all the modules.

I had another idea in mind. Maybe I could turn the Infinitum context from a single point of configuration to a hierarchical structure where each module has its own context as a “child” of the root context. The OrmContext interface could extend the InfinitumContext interface, providing ORM-specific functionality while still inheriting the core context methods. The implementation would then contain a reference to the parent context, so if it was unable to perform a certain piece of functionality, it could delegate to the parent. This could work. The Infinitum context has no notion of module X, Y, or Z, and, in effect, the control has been inverted. You could call it the Hollywood Principle — “Don’t call us, we’ll call you.”

infinitum-context-hierarchy

There’s still one remaining question: how do we identify the “child” contexts and subsequently initialize them? The solution is to maintain a module registry. This registry will keep track of the optional framework dependencies and is responsible for initializing them if they are available. We use a marker class from each module, a class we know exists if the dependency is included in the classpath, to check its availability.

Lastly, we use reflection to instantiate an instance of the module context. I used an enum to maintain a registry of Infinitum modules. I then extended the enum to add an initialize method which loads a context instance.

The modules get picked up during a post-processing step in the ContextFactory. It’s this step that also adds them as child contexts to the parent.

New modules can be added to the registry without any changes elsewhere. As long as the context has been implemented, they will be picked up and processed automatically.

Once this architecture was in place, separating the framework into different projects was simple. Now Infinitum Core can be used by itself if only dependency injection is needed, the ORM can be included if needed for SQLite, AOP included for aspect-oriented programming, and Web for the RESTful web service client and various HTTP utilities.

We Shape Our Buildings, and Afterwards, Our Buildings Shape Us

I think this solution has helped to minimize some of the complexity a bit. As with any modular design, not only is it more extensible, it’s more maintainable. Each module context is responsible for its own configuration, so this certainly helped to reduce complexity in the InfinitumContext implementation as before it was handling the initialization for the ORM, AOP, and REST pieces. It also worked out in that I made the switch to GitHub2 by setting up four discrete repositories, one for each module.

In retrospect, I would have made things a lot easier on myself if I had taken a more modular approach from the beginning. I ended up having to reengineer quite a bit, although once I had a viable solution, it actually wasn’t all that much work. I was fortunate in that I had things fairly well designed (perhaps not at a very high level, but in general) and extremely organized. It’s difficult to anticipate change, but chances are you’ll be kicking yourself if you don’t. I started the framework almost a year ago, and I never imagined it would grow to what it is today.

  1. I was originally hoping to pull out dependency injection as a separate module, but the framework relies heavily on it to wire up components. []
  2. Now that the code’s pushed to GitHub, I begin the laborious task of migrating the documentation over from Google Code. []